与此同时,农历科学以及寻求评估和利用可能助长农历经济的资源的工业企业将推动向地下运营转移。地下操作可能是一个可行的解决方案,用于在表面上的极端条件下,在月球上建立持续的长期存在,受到影响较小或根本没有影响,具体取决于深度。在〜30厘米或更长时间的深度时,月球雷果维持稳定的热环境[1],屏蔽设备和潜在的栖息地,从月球表面的恶劣温度变化中。此外,地下区域包含有价值的资源,例如水冰,这对于原位资源利用(ISRU)至关重要,以支持月球上的长期人类存在。调查地下还提供了对Regolith的地质力学特性的见解,从而为未来的月球任务提供了更好的施工,开挖和流动性计划。这项工作提出了一个新颖的概念,该概念是使用适合在地下移动的机器人系统,使用身体和移动性的一部分受到地下生物(例如sand蛇和earth)的启发。所提出的技术将探索地下热特性,地质力学性质的变化以及潜在有价值的储量的检测和表征,包括但不限于冰矿床。通过弥合表面和地下探索之间的差距,这种方法有可能解锁对月球科学和沉降的关键见解。以下讨论是指类似蛇的机器人,用于初始概念插图。应注意的是,在农历之夜生存的能力已被确定为要封闭民间空间探索的#1优先技术差距[2]。
探索和利用地下空隙来实现长期月球人的人类习惯:运输,挑战和补救技术利用了充气的结构和mycoarchitection。Christopher Maurer 1,James Head 2,Lynn J. Rothschild 3。1个红屋。克利夫兰,哦。chris@redhousestudio.net,布朗大学,普罗维登斯,RI。james_head@brown.edu。3 NASA AMES。 Moffett Field,CA。 lynn.J.Rothschild@nasa.gov。 简介和背景:月球和火星的长期人类外观和居住概念通常呼吁建造地面栖息地(例如小屋,外壳,建筑物等。 ),使用多种原位资源(ISRU)进行建筑材料和启用构造技术。 所有这些技术都需要非常重要的建筑材料,能源和水的可用性。 On the basis of funding from the NASA Ad- vanced Innovative Concepts (NIAC) program, we have been investigating synthetic biology, Mycoarchitecture [1], and flexible, foldable and inflatable forms [2], to ad- dress the significant upmass penalty of taking building materials to Lunar and Martian destinations and develop- ing Myco-Architecture-enabled capabilities to build habi- tats in situ at destination. 在这项贡献中,我们探索了候选人的原位栖息地(熔岩管和堤防尖端空隙),以及如何利用我们的NIAC资助的技术发展来准备此类自然地下空隙(图。3 NASA AMES。Moffett Field,CA。 lynn.J.Rothschild@nasa.gov。 简介和背景:月球和火星的长期人类外观和居住概念通常呼吁建造地面栖息地(例如小屋,外壳,建筑物等。Moffett Field,CA。lynn.J.Rothschild@nasa.gov。简介和背景:月球和火星的长期人类外观和居住概念通常呼吁建造地面栖息地(例如小屋,外壳,建筑物等。),使用多种原位资源(ISRU)进行建筑材料和启用构造技术。所有这些技术都需要非常重要的建筑材料,能源和水的可用性。On the basis of funding from the NASA Ad- vanced Innovative Concepts (NIAC) program, we have been investigating synthetic biology, Mycoarchitecture [1], and flexible, foldable and inflatable forms [2], to ad- dress the significant upmass penalty of taking building materials to Lunar and Martian destinations and develop- ing Myco-Architecture-enabled capabilities to build habi- tats in situ at destination.在这项贡献中,我们探索了候选人的原位栖息地(熔岩管和堤防尖端空隙),以及如何利用我们的NIAC资助的技术发展来准备此类自然地下空隙(图。1-3)用于长期人类居住。1,底部)。月球和火星上的自然地下空隙:地球和行星研究揭示了长期居住和保护避免月球和火星表面条件的极端和危险的另一种概念。地球火山学家长期以来都知道,富富火山喷发会产生熔岩流,其面孔可以冷却和屋顶,从而形成了深度的熔岩管,并继续从喷发地点流出熔岩[3]。最终,这些充满熔岩的地下熔岩管从流动的前面排出,留下一个埋藏的,通常是弯曲的,熔岩管(图1顶部),通常可以通过屋顶上的孔进入,称为“天窗”(图
中国嫦娥六号着陆器上月球背面的首个激光反射器以及未来嫦娥七号极地任务中的部署。 Y. Wang 1 , S. Dell'Agnello 2 , K. Di 1 , M. Muccino 2 , H. Cao 3 , L. Porcelli 2 , X. Deng 3 , L. Salvatori 2 , J. Ping 4 , M. Tibuzzi 2 , Y. Li 5 , L. Filomena 2 , Z. Kang 6 , M. Montanari 2 , Z. 孟 3 , L. Mauro 2 , B. 谢 1,7 , M. Maiello 2 , 1 中国科学院空天信息研究所遥感科学国家重点实验室,北京,100101,中国 (dikc@aircas.ac.cn), 2 国家核电研究所 - 弗拉斯卡蒂国家实验室 (INFN–LNF),通过费米40,00044,意大利弗拉斯卡蒂(simone.dellagnello@lnf.infn.it),3 中国空间技术研究院北京空间飞行器总体工程研究所,北京,100094,中国,4 中国科学院国家天文台,北京,100101,中国,5 中国科学院云南天文台,昆明,650216,中国,6 中国地质大学土地科学与技术学院,北京,100083,中国,7 中国科学院大学,北京,100101,中国。
真空:月球外层由惰性气体和其他原子和分子组成,这些气体和分子从月球内部释放,源自太阳风,或由陨石和彗星尘埃形成 [4, 5]。必须考虑飞行硬件的构造所用的材料及其各自的排气特性。月球表面系统的硬件选择应遵循 NASA 热真空稳定性指南。该模块提供了此信息的资源和数据库,例如材料和工艺技术信息系统 (MAPTIS),它提供了测试材料的排气特性和热真空稳定性等级 [6]。
除了全面满足成功标准并传输高精度着陆的技术数据外,月球表面的活动还将持续到日落,着眼于未来在全面月球和行星探索期间在月球表面进行的任务。
1) 生理变化及应对措施:大约 500 天的长期月球任务给宇航员带来了多方面的生理挑战,包括部分重力暴露、电离辐射以及月球尘埃等环境因素。长时间暴露在低重力环境中会显著降低机械负荷,导致腰椎和股骨颈等负重区域的骨小梁损失高达 25% [1,2]。这种骨质流失与骨骼肌萎缩同时发生,主要影响下肢 [1,2]。这些肌肉骨骼变化会削弱身体机能和稳定性,从而通过减少静脉回流和加剧心脏萎缩来加剧心血管功能减退 [3,4]。虽然最初暴露于部分重力环境会诱发体液转移,从而暂时提高心输出量,但长期暴露会导致循环血容量减少和心室重塑,最终限制有氧能力,并在体力要求高的任务中增加疲劳感 [3,4]。其他结构性变化包括腰椎曲度减小和脊柱僵硬性增加,从而增加椎间盘损伤和背痛的风险,这可能会影响活动能力和舱外活动 (EVA) [1,3]。阻力训练、轴向负重服和下半身负压训练等对策对于减轻这些全身影响和维持功能至关重要 [1,3]。
背景:自 2013 年以来,NASA JSC ARES 一直与 T STAR 和德克萨斯 A&M 大学 (TAMU) 合作,创建与政府、学术界和私营企业共同开发的原型仪器项目。NASA 为 T STAR 提供需求和资金,然后 T STAR 与 TAMU 教员合作,指导高年级本科生 Capstone 团队设计、测试和交付工作原型。这个 LIT 原型遵循了一系列之前的 T STAR 项目,这些项目评估并交付了月球表面 EVA 部署工具的概念,包括 SMART Stick、甘道夫权杖 [1] 和巫师权杖 [2]。用于表面科学仪器和样本收集的探测车原型已通过移动分析月球平台 (MALP) [3] 和 HELIX 重力测量概念 [4] 进行了演示。 24 财年 LIT 的资金由 NASA JSC 月球指挥与控制互操作性 (LUCCI) 项目提供,该项目专注于识别和标准化多个月球表面元素之间的接口,每个接口由具有独特硬件、软件、网络、电源和通信要求的供应商开发。
目的:超高速撞击月球表面抛出的粒子在地球和月球之间形成一个环面。根据我们前期的研究,大约有2.3×10-4kg/s的粒子经过长期的轨道演化后撞击地球。我们主要关注这些地球撞击体,分析它们的轨道元素分布,并估计它们对地球观测的影响。方法:前期工作模拟了月球表面抛出的粒子的长期轨道演化,得到了它们在地月系统中的稳态空间分布。本文分析了地球撞击体的模拟结果,包括不同初始参数的撞击体占所有撞击体的比例、轨道元素分布以及粒子在几个地球观测站上的投射。结果:在一定的初始参数范围内,月球表面抛出的粒子更有可能撞击地球。大多数从月球抛射出的撞击体(约 70%)会在一年内到达地球,而大多数较小粒子(87.2% 的 0.2 µm 粒子和 64.6% 的 0.5 µm 粒子)会在一周内到达地球。根据轨道分布的差异,很大一部分从月球抛射出的地球撞击体可与行星际尘埃粒子区分开来。此外,从不同的地球观测站的角度来看,从月球抛射出的粒子可能呈现出不同的结构和方向。
月球电池是一个完全集成的太阳能电池系统。它包含一个混合逆变器,可有效地将太阳能和电池能量转换为电源房屋,并直接将多余的太阳能存储在电池中,以最大程度地利用太阳能使用。月球电池有模块化,紧凑的块,为各种尺寸的房屋带来24/7可靠的清洁能源。由智能软件提供动力,Lunar的持久电池与您的太阳系共同起作用,以最大程度地提高自我消费,节省公用事业账单并提供真正的全家备用体验。