对返回的月球样品的分析表明,总碳含量在50至200 ppm不等,来自土著和外部来源(例如太阳风和微观元素)的贡献[2-4]。在月球样品中发现的碳种类中,二氧化碳(CO 2)是最丰富的碳(CO 2),占总碳的约10–30%[3]。值得注意的是,在大多数阿波罗样品中对CO 2的检测并非仅与火山活性相关。相反,它的存在与岩石晶粒的大小密切相关,表明月球土壤中CO 2的主要来源是太阳风[2,5]。相比之下,其他气态物种(例如一氧化碳(CO)和甲烷(CH 4))仅出现在痕量中,强调CO 2作为主要的挥发性相[2,4]。剩余的农历碳库存主要是元素形式,反映了月球的减少表面环境[3]。
月船一号于 2008 年 10 月 22 日从斯里哈里科塔的 Satish Dhawan 航天中心发射升空。它使用了本土研制的极地卫星运载火箭 (PSLV-XL)。该航天器于 2008 年 11 月 8 日成功进入月球轨道,仅在六天后就释放了月球撞击探测器。同一天,由于恒星跟踪传感器故障,月球撞击探测器在沙克尔顿陨石坑附近坠毁。撞击探测器坠毁时,人们可以分析月球地下土壤中是否有冰的痕迹。月船一号在距月球表面仅 100 公里的地方盘旋,拍摄了大量月球地形的高分辨率图像。它还进行了矿物测绘,并搜寻了月球表面是否有放射性元素。该任务的主要成就之一是发现月球土壤中存在大量水分子。该任务仅花费了 5600 万美元,为我们提供了有关月球表面的重要信息。它还在月球南极发现水冰,可用于饮用和其他用途。
进一步。 • 技术进步:执行月球南极任务使印度空间研究组织能够开发和展示创新技术。这包括软着陆技术、导航系统、资源利用和长期操作方面的进步,这些进步可以在未来的太空任务中得到广泛的应用。 月船 3 号上的仪器和实验:着陆器实验: • 月球边界超敏电离层和大气层的无线电解剖 (RAMBHA):该实验研究月球表面附近的电子和离子,研究它们的行为和随时间的变化。 • 钱德拉表面热物理实验 (ChaSTE):ChaSTE 专注于极地附近月球表面的热特性,有助于我们了解温度变化。 • 月球地震活动仪器 (ILSA):ILSA 测量着陆点附近的月球地震,通过地震活动分析月球地壳和地幔的成分。 • 激光反射器阵列 (LRA):NASA 提供的这项被动实验可作为激光的目标,为未来的任务提供精确的测量。 月球车实验: • 激光诱导击穿光谱仪 (LIBS):LIBS 可确定月球表面的化学和矿物成分,从而深入了解其地质构成。 • 阿尔法粒子 X 射线光谱仪 (APXS):APXS 可识别月球土壤和岩石中的镁、铝、硅等元素,有助于我们了解月球材料。 任务研究目标:
高分辨率透射电子显微镜 (HRTEM)、原子探针断层扫描 (APT) 和基于同步加速器的扫描透射 X 射线显微镜 (STXM) 等先进的微分析技术使人们能够在原子尺度上表征天然材料的结构和化学和同位素组成。双聚焦离子束扫描电子显微镜 (FIB-SEM) 是一种强大的工具,可用于特定位置的样品制备,然后通过 TEM、APT 和 STXM 进行分析,以获得最高的能量和空间分辨率。FIB-SEM 也可用作三维 (3D) 断层扫描的独立技术。在这篇评论中,我们将概述在地球和行星科学中使用 FIB-SEM 对天然材料进行高级表征时的原理和挑战。更具体地说,我们旨在通过以下示例突出 FIB-SEM 的最新应用:(a) 在月球土壤颗粒的空间风化研究中使用传统的 FIB 超薄小颗粒样品制备,(b) 通过基于 FIB 的 APT 对锆石中的 Pb 同位素进行迁移,(c) 基于协调同步加速器的 STXM 对碳质球粒陨石中的外星有机物质进行表征,以及最后 (d) 通过切片和视图方法对基于 FIB 的油页岩孔隙进行 3D 断层扫描。双光束 FIB-SEM 是一个强大的分析平台,其技术开发和适应范围在地球和行星科学领域是广阔而令人兴奋的。例如,在不久的将来,双光束 FIB-SEM 将成为表征返回地球的细颗粒小行星和月球样本的重要技术。
进一步。 • 技术进步:执行月球南极任务使印度空间研究组织能够开发和展示创新技术。这包括软着陆技术、导航系统、资源利用和长期操作方面的进步,这些进步可以在未来的太空任务中得到广泛的应用。 月船 3 号上的仪器和实验:着陆器实验: • 月球边界超敏电离层和大气层的无线电解剖 (RAMBHA):该实验研究月球表面附近的电子和离子,研究它们的行为和随时间的变化。 • 钱德拉表面热物理实验 (ChaSTE):ChaSTE 专注于极地附近月球表面的热特性,有助于我们了解温度变化。 • 月球地震活动仪器 (ILSA):ILSA 测量着陆点附近的月球地震,通过地震活动分析月球地壳和地幔的成分。 • 激光反射器阵列 (LRA):NASA 提供的这项被动实验可作为激光的目标,为未来的任务提供精确的测量。 月球车实验: • 激光诱导击穿光谱仪 (LIBS):LIBS 可确定月球表面的化学和矿物成分,从而深入了解其地质构成。 • 阿尔法粒子 X 射线光谱仪 (APXS):APXS 可识别月球土壤和岩石中的镁、铝、硅等元素,有助于我们了解月球材料。 任务研究目标:
摘要:将于2030年左右建立的国际月球研究站,将为月球漫游器提供机器人武器作为建筑商。建筑需要月球土壤和月球漫游者,为此,由于短暂的一天,尤其是在南极附近,漫游者必须在有限的时间内遇到不同的航路点,而不会在有限的时间内遇到障碍。传统的计划方法,例如从地面上载指令,几乎无法以高效的效率同时处理许多流浪者。因此,我们提出了一种基于深度强化学习的新的协作路径规划方法,在该方法中,人工电位领域的目标和障碍都证明了启发式方法。的环境是随机生成的,在创建大小障碍和不同的航路点以收集资源,训练深厚的增强学习代理以提出行动,并带领流浪者在没有障碍,完成漫游者的任务并达到不同目标的情况下移动。在每个步骤中,由障碍物和其他流浪者创造的人工潜力领域都会影响流动站的动作选择。人工潜力领域的信息将转变为有助于保持距离和安全性的深度加强学习中的奖励。实验表明,我们的方法可以引导流浪者更安全地移动,而不会变成附近的大障碍或与其他流浪者发生碰撞,并且与具有改进的避免障碍物方法的多代理A-Star路径计划算法相比,消耗的能量更少。