对于在座的各位,我还应该指出,太空局的成立加强了各机构之间的合作。现在比以往任何时候都更需要这样做。我们必须全面协调我们的努力。说实话,这部分有时非常令人兴奋——比如当我和纳尔逊局长一起去肯尼迪航天中心拜访阿尔特弥斯二号宇航员时。我有幸与即将成为半个多世纪以来第一批登陆月球的宇航员共度时光——我应该补充的是,其中还包括第一位女性和第一位有色人种。太棒了。其他协调工作显然没有那么光鲜。但很明显,为了继续保持美国在太空领域的领导地位,我们需要与国家空间委员会、美国国家航空航天局、商务部、国防部、交通部和国务院密切合作。在国家安全问题上尤其如此。我们知道
美国多个机构已制定政策和战略,以利用商业太空能力的创新、速度和成本节约来执行政府任务。美国国家航空航天局 (NASA) 是早期采用者,目前依靠商业能力将人员和货物运送到国际空间站和从国际空间站运出,并计划将商业能力用于返回月球的阿尔特弥斯 (Artemis) 计划的关键部分。此外,国防部 (DOD) 也在寻求利用商业资产和服务来执行各种国家安全任务。2024 年 4 月,国防部和美国太空部队 (USSF) 发布了商业太空战略,以指导与商业太空参与者加强伙伴关系和参与。同样,美国国家海洋和大气管理局 (NOAA) 正在评估使用商业太空数据进行天气预报。
背景信息:(摘自 NASA 探索)动物已用于太空研究。许多动物已经进入太空。我们现在经常使用动物来测试产品,以确保它们对人类安全,或者了解人们对不同事物的反应。在 20 世纪 50 年代和 60 年代,俄罗斯人和美国人将狗和猴子送入太空,这些飞船原型最终发展成为人类用于载人登月任务的飞船。我们需要知道生物会如何应对太空中的不同环境。1957 年,一只名叫莱卡的俄罗斯狗被送上第二颗人造卫星。这次发射证明了活体动物可以在太空中生存,并进一步加速了美国和苏联之间将载人飞船送入地球轨道并最终送往月球的竞赛。
对返回的月球样品的分析表明,总碳含量在50至200 ppm不等,来自土著和外部来源(例如太阳风和微观元素)的贡献[2-4]。在月球样品中发现的碳种类中,二氧化碳(CO 2)是最丰富的碳(CO 2),占总碳的约10–30%[3]。值得注意的是,在大多数阿波罗样品中对CO 2的检测并非仅与火山活性相关。相反,它的存在与岩石晶粒的大小密切相关,表明月球土壤中CO 2的主要来源是太阳风[2,5]。相比之下,其他气态物种(例如一氧化碳(CO)和甲烷(CH 4))仅出现在痕量中,强调CO 2作为主要的挥发性相[2,4]。剩余的农历碳库存主要是元素形式,反映了月球的减少表面环境[3]。
抽象的黑暗时代和宇宙黎明在婴儿宇宙上基本上是未开发的窗户(Z〜200 - 10)。对中性氢的红移21厘米线的观察可以为这些时代的基本物理和天体物理学提供宝贵的新见解,而其他探针无法提供,并驱动了许多未来基于地面的仪器,例如平方英里阵列(SKA)(SKA)和水直射阵列(Hydro-gen)。我们回顾了高红移21-CM宇宙学领域的进度,特别是通过探测z> 30的黑暗年龄来解决哪些问题。我们得出的结论是,只有一个基于空间或月球的射电望远镜,该望远镜与地球的射频干扰(RFI)信号及其电离层相比,可以检测到来自黑暗时代的21 cm信号。我们建议一个通用的任务设计概念Codex,它将在未来几十年中实现这一目标。
回顾刚刚过去的这个世纪所取得的众多辉煌成就,美国宇航员尼尔·阿姆斯特朗和巴兹·奥尔德林于 1969 年 7 月登陆月球的壮举格外引人注目。在本世纪初,很少有人能想象人类飞翔,更不用说摆脱地球引力前往月球。也很少有人能想象世界会以如此快的速度从航空旅行发展到太空探索。事实上,当这个世纪开始时,莱特兄弟还在俄亥俄州代顿的自行车店里工作,试图设计一种可以飞行的飞行器。从 1903 年他们在北卡罗来纳州基蒂霍克海滩首次危险飞行到登陆月球,仅仅过去了 66 年。尽管他们的首次飞行只有 120 英尺,但它开启了一个新时代,为一个世纪的惊人技术进步奠定了基础。 1
回顾刚刚过去的这个世纪所取得的众多辉煌成就,美国宇航员尼尔·阿姆斯特朗和巴兹·奥尔德林于 1969 年 7 月登陆月球的壮举格外引人注目。在本世纪初,很少有人能想象人类飞翔,更不用说摆脱地球引力前往月球。也很少有人能想象世界会以如此快的速度从航空旅行发展到太空探索。事实上,当这个世纪开始时,莱特兄弟还在俄亥俄州代顿的自行车店里工作,试图设计一种可以飞行的飞行器。从 1903 年他们在北卡罗来纳州基蒂霍克海滩首次危险飞行到登陆月球,仅仅过去了 66 年。尽管他们的首次飞行只有 120 英尺,但它开启了一个新时代,为一个世纪的惊人技术进步奠定了基础。 1
1. 简介 20 世纪 50 和 60 年代,美国研制了载人运载火箭,将美国国家航空航天局的宇航员送上月球,从而实现了肯尼迪总统在 20 世纪 60 年代末让美国人登上月球的承诺。在过去 50 年里,美国主导的载人航天事业尽管出现了创新的制造方法,但运载火箭核心结构的设计和制造几乎没有什么改变。现有的金属运载火箭结构制造技术,如推进剂箱、级间和适配器,包括与阿波罗时代同义的多件焊接和/或铆接施工方法。生产通常涉及使用厚板起始原料,将其加工成包含皮桁、正交或等网格加强筋的单体结构。当前的制造和设计选项往往会对系统架构产生负面影响。
经验和地面测试表明,月球灰尘覆盖范围会严重降低热系统性能,并且随着推动月球返回月球的时间超过几天,农用灰尘被认为是一个重大的技术挑战。Lunar Terrain车辆(LTV)和加压漫游车(PR)将在月球表面进行长时间运行,并以与宇航员和其他机器人相互作用的高速行动,这会导致灰尘转移到车辆上,并有可能转移到关键的热表面上。灰尘覆盖范围会导致整体光学特性的变化,由于灰尘层的绝缘作用,甚至对热表面和软货物的磨损,对热排斥的阻力增加。本文概述了目前已知和未知的有关暴露于月南极灰尘的热表面会发生的事情,一些缓解灰尘的选择和测试指南,以及可以使用哪些资源来帮助克服这个问题。
在2020年夏天,ISECG发布了“ 2020年8月的全球勘探路线图”。该补充剂提供了最初在2018年全球勘探路线图(GER)上发表的Lunar Surface探索场景的其他细节。从那以后,全球对太空探索的兴趣进一步增长,ISECG成员资格已于2020年底扩展到26个机构。这些太空机构中有许多已重新专注于对月球的探索。该补充剂在更新的月球表面探索方案中捕获了月球勘探计划中的最新发展。它描述了一个探索活动和建筑要素,可以逐步解决一组十二个ISECG LUNAR Surface Exploration目标,同时利用ISECG目标并在2018年GER中概述的可持续原则。最终,该补充剂描述了新兴的国家和商业能力,以实现“月球倡议”,这些倡议将为火星和进一步的月球活动做准备。