和对 SARS-CoV-2 生命周期至关重要的病毒蛋白,并证明了溴结构域和末端外结构域蛋白 2 和 4 (BRD2/BRD4) 与 SARS-CoV-2 的 E 蛋白相互作用。另一项利用 CRISPRi 筛选的研究表明,BRD2 抑制会下调血管紧张素转换酶 2 (ACE2) 表达,并通过下调干扰素刺激基因 (ISG) 来控制 COVID-19 患者的过度活跃免疫反应。6 此外,Gilham 等人报道,溴结构域和末端外结构域蛋白家族 (BET) 抑制剂阿帕贝龙 (RVX-208) 通过降低 ACE2 表达来阻断 SARS-CoV-2 感染,7 而 Qiao 等人表明,使用 BET 抑制剂对雄激素受体的转录抑制也会导致 SARS-CoV-2 感染减少。8
替代末端连接 (alt-EJ) 机制,例如聚合酶θ介导的末端连接,越来越多地被认为是导致双链断裂修复不准确的重要因素。我们之前提出了一个 alt-EJ 模型,其中双链断裂附近的短 DNA 重复退火形成二级结构,从而引发有限的 DNA 合成。然后,新生的 DNA 与另一个断裂端的微同源序列配对。这种合成依赖性微同源介导的末端连接 (SD-MMEJ) 解释了果蝇 I-SceI 核酸酶切割后恢复的许多 alt-EJ 修复产物。然而,影响 SD-MMEJ 修复的序列特异性因素仍有待充分表征。在这里,我们通过对 1100 种不同序列环境中 Cas9 诱导的双链断裂处的修复产物进行计算分析,扩展了 SD-MMEJ 模型的实用性。我们在单核苷酸分辨率下发现了成功修复 SD-MMEJ 的序列特征的证据。这些特征包括最佳引物重复长度、重复与断裂的距离、引物重复之间的 DNA 序列灵活性以及微同源模板相对于首选引物重复的定位。此外,我们还表明 DNA 聚合酶 theta 是 Cas9 断裂处大多数 SD-MMEJ 修复所必需的。本文描述的分析包括一个计算流程,可用于表征任何序列环境中 alt-EJ 修复的首选机制。
本出版物不构成或提供科学或医学建议、诊断或治疗。此信息基于 dsm-firmenich 的现有知识,仅包含供企业对企业使用的科学和技术信息。dsm-firmenich 不对信息的准确性、可靠性或完整性以及将获得的结果作出任何陈述或保证。使用此信息应由您自行决定并承担风险。它不会免除您遵守所有适用法律和法规以及遵守所有第三方权利的义务。本文中的任何内容均不会免除您自行进行适用性测定和测试(包括成品的稳定性测试)的责任。在向最终消费者贴标签或做广告时,还应考虑特定国家或地区的信息。本文件的内容如有更改,恕不另行通知。本手册中列出的所有商标均为 dsm-firmenich 在荷兰和/或其他国家/地区的注册商标或商标。
摘要:由于间歇性可再生能源的比例不断增加,加上最近的极端天气事件,全球电力供应波动性增加,引起了人们对能源系统可靠性问题以及可再生能源在这些系统中的作用的关注。可再生能源部署战略已经成为未来全球能源系统辩论的关键要素。同时,更广泛地使用可再生能源意味着对间歇性电力的依赖性更高,这将使电力系统的可靠性面临风险。政策制定者正在采取措施提高能源系统的可靠性。矛盾的是,对可再生能源的支持和对能源系统可靠性的分析是通过两种不同且很少重叠的研究方法来处理的。因此,可再生能源的推广往往是在没有考虑系统可靠性的情况下设计的。据我们所知,一个能够捕捉这些投资激励并允许调整这种财政支持的模型并不存在。本文介绍了一种混合模型,该模型可以潜在地引导可再生能源投资有利于能源系统的可靠性。我们使用一个程式化的案例展示了基于可靠性的可再生能源支持理念的实际应用。根据系统中不同可再生能源电力输出的互补性,这种基于可靠性的支持可以大大减少对更大备用容量的必要性,可以降低能源系统的总体成本,并可以减少其对环境的影响。
摘要:精确的基因编辑是 - 或很快就会用于多种疾病的临床用途,并且正在开发更多应用。由单个诱导RNA(SGRNA)导演的可编程核酸酶CAS9可以在基因组DNA的靶位点中引入双链断裂(DSB),这构成了使用这种新技术的基因编辑的初始步骤。在哺乳动物中,两种途径占主导地位的DSB修复 - 非同源末端连接(NHEJ)和同源指导的修复(HDR) - 基因编辑的结果主要取决于这两个修复途径之间的选择。尽管HDR以其高度有吸引力,但在生物学环境中,修复途径的选择是有偏见的。哺乳动物细胞优先通过多种机制利用NHEJ:NHEJ在整个细胞周期中都活跃,而HDR仅限于S / G2阶段; NHEJ比HDR快。 NHEJ抑制了HDR过程。这表明可以通过操纵细胞修复途径的选择来实现对编程DNA病变结果的明确控制。在这篇综述中,我们总结了DSB修复途径,基于DNA切除的选择选择的机制,并在研究策略中取得了进展,该策略基于操纵修复途径的选择以增加哺乳动物细胞的HDR频率,从而有利于Cas9介导的HDR。还讨论了提高HDR效率的其余问题。本评论应促进CRISPR / CAS9技术的开发,以实现更精确的基因编辑。
摘要:以低成本实现原始高质量石墨烯和其他层状材料的可持续生产是实现 2D 材料大规模应用需要克服的瓶颈之一。液相剥离 (LPE) 与 N-甲基-2-吡咯烷酮 (NMP) 结合被认为是剥离和分散石墨烯的最有效方法。不幸的是,NMP 既不可持续,也不适合扩大生产,因为它会对环境产生不利影响。在这里,我们通过揭示绿色溶剂的剥离效率和石墨烯分散性对石墨烯产量的独立贡献,展示了绿色溶剂的真正潜力。通过实验分离这两个因素,我们表明给定溶剂的剥离效率与其分散性无关。在这里,我们表明异丙醇可以像 NMP 一样有效地剥离石墨。石墨的极性和色散能与溶剂表面张力之间的匹配比证实了我们的发现。这种剥离效率和溶剂分散性的直接证据为更深入地了解大规模可持续石墨烯制造的真正潜力铺平了道路。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月21日发布。 https://doi.org/10.1101/2023.05.08.539799 doi:Biorxiv Preprint
摘要:(1)背景:复发/转移性头部和颈部颈部癌(HNSCC)的第一条治疗方法最近随着针对抗PD-1免疫检查点的免疫疗法的批准而进化。但是,只有约20%的患者表现出持久的客观肿瘤反应。通过治疗诱导的免疫原性死亡调节癌细胞免疫原性,以便能够提高对免疫检查点阻断免疫疗法反应的患者的速率。(2)方法:使用人类HNSCC细胞系模型和小鼠口腔癌的合成性模型,我们已经分析了前蛋白质方案(使用抗EGFR Cetuximab抗体和铂基化学疗法的联合治疗)的能力,以修饰HNSCC细胞的免疫性。(3)结果:我们表明,西妥昔单抗和顺铂的组合通过细胞周期抑制和诱导凋亡细胞死亡而降低了细胞的生长,独立于p53。此外,发现极端方案的不同成分在可变程度上诱导,并以细胞依赖性的方式诱导免疫原性死亡介质的发射,包括钙网蛋白,HMGB1和I型I型Interferon响应性趋化因子。有趣的是,单独的西妥昔单抗或与IC 50剂量的顺铂结合使用,可以在体内诱导抗肿瘤免疫反应,但与高剂量的顺铂结合时不会诱导抗肿瘤的免疫反应。(4)结论:我们的观察结果表明,在中等凋亡诱导的条件下,仅极端方案或西妥昔单抗能够引起免疫系统的动员和HNSCC中的抗肿瘤免疫反应。
三阴性乳腺癌 (TNBC) 预后不良,主要是因为它们对化疗有耐药性。已知这种耐药性与 BCL-2 家族蛋白(即 BCL-xL、MCL-1 和 BCL-2)中某些抗凋亡成员的表达升高有关。这些蛋白通过结合和隔离抑制促凋亡蛋白活化来调节细胞死亡,并且可以被 BH3 模拟物选择性拮抗。然而,BCL-xL、MCL-1 和 BCL-2 对 TNBC 细胞对化疗敏感性的个体影响,以及它们受癌症相关成纤维细胞 (CAFs) 的调节,癌症相关成纤维细胞是肿瘤基质的主要成分,也是治疗耐药性的关键因素,这仍有待阐明。使用基因编辑或 BH3 模拟物抑制 TNBC 细胞系 MDA-MB-231 中的抗凋亡 BCL-2 家族蛋白,我们发现 BCL-xL 和 MCL-1 通过补偿机制促进癌细胞存活。该细胞系对化疗的敏感性有限,与 TNBC 患者观察到的临床耐药性一致。我们阐明了 BCL-xL 在治疗反应中起着关键作用,因为它的消耗或药理抑制提高了化疗效果。此外,BCL-xL 表达与患者来源的肿瘤中的化疗耐药性有关,其中其药理抑制增强了体外对化疗的反应。在癌细胞和 CAF 的共培养模型中,我们观察到即使在 BCL-xL 表达降低使癌细胞更易受化疗影响的情况下,与 CAF 接触的癌细胞也会对化疗表现出降低的敏感性。因此,CAF 在乳腺癌细胞中发挥着显著的促存活作用,即使在通过联合化疗和缺乏主要化学抗性因素 BCL-xL 而极易导致细胞死亡的环境中也是如此。
虽然电动汽车有望减少道路上的碳排放,但从整体生命周期的角度来看,在其电池的生产和报废管理中需要进一步考虑环境因素。最近,循环报废思维得到了推广,其策略是通过二次生命来延长退役电池的使用寿命,因为寿命延长通常在生命周期评估中受到青睐。然而,建议针对不同的锂离子化学成分,将这些策略标准化,以实现回收或重新利用的路径。这种分类主要涉及含钴阴极锂离子电池,即 NMC,它是交通运输的主导技术,以及替代技术,即 LFP,由于供应链中钴的稀缺,最近在汽车领域受到了更多的关注。这种技术转变将影响它们退役时的报废管理。在这种安排下,重新利用此类电池化学品的经济优先性需要量化。本研究评估了重新利用退役锂离子 NMC 和 LFP 电池用于电力系统中的能源套利应用的财务回报。在爱尔兰和昆士兰的市场中研究了重新利用的可行性。结果表明,与 NMC 相比,退役的锂离子 LFP 对价格波动的反应更频繁,且财务回报率更高;因此,它们具有更高的重新利用潜力,从循环经济的角度来看,将它们更多地融入新汽车中是有希望的。对于不同规模的系统和电池持续时间,已经观察到不同的回报率。与半小时和两小时持续时间的小型系统相比,中型系统中的一小时电池的经济效益更为显著。敏感性分析表明,在昆士兰这样的竞争性电力市场中,即使为重新利用的系统花费与新系统相同的资本成本,也只会产生边际财务回报,而地方当局对循环经济商业模式的进一步激励将有效地使此类投资变得可行。
