) b,t,c 母线b、时刻t和运行点c的无功功率发电上限/下限,(pu)。 ( y/z ) b,t 用于模拟发电机有功和无功功率限值的辅助变量。 v up/dn b,t 用于模拟无功功率限值激活后 COP 和 SLP 电压差的辅助变量。 λ 载荷参数。 S bk,t,c 在时刻t和运行点c流过第bk条线路的视在功率,(pu)。 ( V/θ ) b,t,c 在时刻t和运行点c母线b的电压幅值/角度,(pu/rad)。 参数: KP/Q b 母线b的有功/无功功率需求增量因子。 KG b 母线b的有功功率发电增量因子。 Y bk /γ bk 系统导纳矩阵第bk个元素的幅值/角度。 η b,t 在时间 t 时由母线 b 供电的电解器的效率因数,单位为 kg/MWh。E b,t,c 连接到母线 b 的发电机的内部电压,时间 t 和工作点 c ,(pu)。X sb 连接到母线 b 的发电机的同步电抗。
摘要 — 电池储能 (BESS) 技术的快速发展促使人们以最优成本将其用于辅助服务。本文讨论了一种在给定网络中 BESS 放置的优化工具,以减少有功/无功功率损耗。该策略基于基于实际数据的网络进行测试,并使用损耗灵敏度因子方法来选择最佳总线以容纳 BESS,从而使相关参数保持最佳状态。据观察,由于所选总线上的 BESS 本地发电,电网性能在功率损耗方面有所改善,该总线具有最高的损耗灵敏度因子指数,可以量化总线性能的严重程度。索引术语 — 有功功率损耗;电池储能;损耗灵敏度因子;电力网络
与电网跟踪发电机频率响应相比,此工具的结果还可以突出 VMM 的影响。在电网跟踪模式下,我们期望看到有功功率与频率偏差成正比。图 4(左)显示,有功功率实际上在最大频率偏差之前达到峰值,清楚地表明电网形成正在进行中。图 4(右)中明显显示了此事件的合规性评估,期望电网跟踪响应,但电网形成的领先性质意味着响应始终大于要求,这总体上为频率提供了更稳定的效果。简而言之,作为对 ROCOF 而不是频率偏差的响应的结果,可以看出 VMM 正在推动 HPR 引领频率变化,而不是滞后。
1. 在适当的时间注入和吸收适当数量的有功功率和无功功率,以最佳地支持网络电压并减少电压相位不平衡。 2. 在峰值负载期间注入有功功率和无功功率,以减少馈线上的峰值负载。 3. 自主管理电池的充电状态,而不影响电网支持功能。 4. 无缝集成来自外部控制器(例如 ADMS 或 VPP 系统)的外部充电/放电命令。 5. 允许参与基于本地(分散)频率测量的 FCAS 市场。 6. 自主运行,不严重依赖通信。在有通信和上游信息的情况下,它会优化其性能。
摘要 —本文提出了一种连接在配电层的电池储能系统 (BESS) 的新应用。它包括以这样一种方式控制 BESS,即进入配电网的净有功功率和无功功率尽可能接近后者的动态等效模型的响应,后者用于输电系统的大扰动动态模拟。因此,BESS 补偿了等效模型不可避免的不准确性,从而可以以更高的精度保证使用。电池应该可用于配电网主变电站的其他用途。其有功功率和无功功率的控制无需借助该电网的任何模型。在 CIGRE MV 测试系统上报告了模拟结果。在响应各种严重程度的扰动时都表现出良好的性能。
就抽水蓄能电站需求和储能发电站需求以及可控 PPM 而言,指示性运营计划中所示的相关生效时间)仅供参考,用户应记住,调度指令或有功功率控制设定点可能反映比指示性运营计划中更多或不同的 CDGU、聚合发电机组和/或可控 PPM、抽水蓄能电站需求、储能发电站需求和/或总发电机组可控 PPM 要求。TSO 可针对任何未声明可用性或需求侧单元的 CDGU 和/或聚合发电机组、可控 PPM、抽水蓄能电站需求、储能发电站需求或聚合发电机组或任何可控 PPM 的有功功率控制设定点发布调度指令
输电系统运营商对电力系统稳定性的研究已清楚表明,在未来几年和几十年内,提供预定义惯性常数的可能性正在下降,而小于此惯性的时间段将大幅增加。因此,特别是在低惯性和逆变器主导的电力系统中,绝对有必要通过激活非常快速的有功功率储备(例如合成惯性 (SI) 或快速频率响应 (FFR))尽快减少任何有功功率不平衡。目前,电网规范中并未强制要求这些要求,但在最近修订的欧洲电网规范发电机要求 (RfG) 的当前草案中,从 2023 年开始,这两项要求都适用于额定容量超过一定限度的逆变器耦合发电站。
SPV 端的谐波和电压调节利用太阳能发电的热潮已经取代了很大一部分传统发电方式,同时,具有大量无功分量的负载实际上会降低系统的功率因数。随着太阳能光伏电站 (SPV) 的普及,功率因数、功率因数校正、无功功率要求和谐波对于消费者和公用事业都变得非常重要。众所周知,电网中的容性负载会导致功率因数超前和过压,而感性负载会导致功率因数滞后和欠压。系统的低功率因数会给电网带来很高的输电负担(和损耗),因此,大多数监管机构都规定允许公用事业公司向大宗消费者收取低功率因数的罚款。传统 SPV 系统以单位功率因数运行,而不考虑公用事业网络的无功功率需求。实际上,这种光伏系统连接到电网时,会降低负载端的功率因数,因为有功功率的一部分是通过 SPV 满足的(其中 SPV 容量小于消费者端的负载),然后电网提供平衡有功功率,但保持相同数量的无功功率给连接的负载。这可以通过以下简单示例来解释:示例:- 图 1 中的前提是消耗 1000kW 的有功功率和 450KVAr 的无功功率,导致功率因数为 0.912(滞后)和标称较低的系统电压。如果该场所安装了一个 500kW SPV 系统,该系统以单位功率因数输出电力,则只有从电网输入的有功功率会减少(以(SPV)发电的程度为准)。从电网吸收的无功功率将保持不变。如果 SPV 电厂发电 500 kW,则从电网吸收的无功功率将为 500kW 和 450kVAR。实际上,电网功率的功率因数将滞后 0.743。因此,负载端的电压将进一步下降。图 1
图 3- 20: LVRT 期间无功功率响应不理想的典型电厂案例研究 ...................................................................................................................................... 78 图 3- 21: RE 电厂外部 765 kV Bhadla-Bikaner 电路 1 的相间故障 ............................................................................................. 79 图 3- 22:通过 400 kV Bhadla 端的 400 kV Bhadla-Bhadla-2 电路 1 的 PMU 观察到的 765 kV Bhadla-Bikaner 电路 1 的 YB 故障 ................................................................................................................ 80 图 3- 23: 事件期间的 Bassi PMU 频率 ............................................................................................................................. 80 图 3- 24: 通过 SCADA 观察到的 NR 发电损失为 7120 MW ............................................................................................................. 81 图 3- 25: LVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................................. 82 图3- 26 典型电厂在 LVRT 期间无功响应满意的案例分析 ...................................................................................................................... 83 图 3- 27 典型电厂在 LVRT 期间有功响应延迟的案例分析 ...................................................................................................... 84 图 3- 28 典型电厂在 LVRT 期间有功响应不满意的案例分析 ............................................................................................. 84 图 3- 29 典型电厂在 LVRT 期间无功响应不满意的案例分析 ............................................................................................. 85 图 3- 30 典型电厂在 HVRT 期间有功响应满意的案例分析 ............................................................................................. 85 图 3- 31 典型电厂在 HVRT 期间无功响应满意的案例分析 ............................................................................................. 86 图 3- 32 典型电厂在 HVRT 期间有功响应不满意的案例分析 ............................................................................................. 86 图 3- 33 典型电厂在 HVRT 期间无功响应不满意的案例分析 ............................................................................................. 87 图3- 34: 典型电厂响应不良的案例研究 ...................................................................................................... 88 图 3- 35: 765kV Bhadla2-Ajmer 电路 2 发生相接地故障,随后 RE 电厂外部的 A/R 失败 ................................................................................................................................ 89 图 3- 36: 765kV Ajmer-Bhadla2 ckt-2 发生相接地故障,随后 A/R 失败 ............................................................................................................................. 90 图 3- 37 事件期间 RE 发电量的减少(SCADA 数据) ............................................................................................................. 90 图 3- 38: 典型电厂在 LVRT 期间具有令人满意的有功功率响应的案例研究 ............................................................................................. 92 图 3- 39: 典型电厂在 LVRT 期间具有令人满意的有功功率响应的案例研究 ............................................................................................. 92 图 3- 40: 典型电厂在 LVRT 期间有功功率响应延迟的案例研究 ............................................................................................................. 3-41:LVRT 期间有功功率响应不理想的典型电厂案例研究...................................................... 94 图 3-42 2 月 9 日事件中的 NR 太阳能发电模式......................................................................................... 95 图 3- 43 2 月 9 日事件中的 NR 太阳能发电模式 .............................................................................. 95 图 3- 44:在 Bhadla 端打开 765 kV Bhadla-Bikaner 电路 1 线路电抗器 ............................................................................. 96 图 3- 45:打开线路电抗器后 765 kV Bhadla (PG) 的电压(根据 765 kV Fathegarh-2 Bhadla (PG) 线路的 PMU 记录) ................................................................................................................ 96 图 3- 46:事件期间的 Bassi PMU 频率 ............................................................................................................. 97 图 3- 47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 在过电压阶段 I 上跳闸 98 图 3- 48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ...... 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ........................................ 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ........................................ 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究 ................................................................................................................................................ 102 图 3-53:典型 RE 电厂的逆变器数据表 ............................................................................................................................. 104 图 3-54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................... 96 图 3-46:事件期间的 Bassi PMU 频率 .............................................................................................. 97 图 3-47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 因过电压阶段 I 跳闸 98 图 3-48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ............................................................................................. 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究........................................................................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 .......................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................... 96 图 3-46:事件期间的 Bassi PMU 频率 .............................................................................................. 97 图 3-47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 因过电压阶段 I 跳闸 98 图 3-48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ............................................................................................. 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究........................................................................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 .......................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 ...................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 ...................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110
<3% (额定功率) > 0.99.99 (额定功率) 有功功率调整率 -1-+1 P 隔离方式 内置变压器 (可选) 输出电压精度 1% 输出电压总谐波 <3% (线性负载) P 不平衡负载能力 100% 过载能力 110% - 正常运行,120% - 1 分钟