一月为更快乐、更高效、更充实的生活带来了新的可能性。无论您是想改变处理人际关系的方式还是克服坏习惯,这些自助有声读物都会激发积极的变化。如需更多灵感,请浏览我们精选的顶级自助书籍列表。《Unstressable》深入探讨了创伤后成长的概念,提供了使用神经科学和通俗易懂的心理学来管理压力的实用练习。Kirren Schnack 博士提供了焦虑急救包,其中包括音频独有的冥想指导和问答环节。分手可以带来变革,正如 Ginger Dean 的摆脱有毒关系手册所示。好奇心专家 Scott Shigeoka 通过他的书《Seek》帮助听众建立联系、治愈和个人成长。Michael Greger 博士在《如何不衰老》中分享了保持青春和整体幸福感的循证策略。最后,Vex King 的《没有人教给我们关于爱情的事》提供了培养充实的浪漫生活的简明指导。给定文本:解释此文本:听着,这本非凡的有声读物适合任何希望利用宇宙的力量和自己的自我理解来建立更强大、更深层次的关系的人。如果你为自己设定了似乎永远无法坚持的崇高决心,那么这就是你新年的倾听!在经历了过去几年的动荡之后,我们都应该在开始新的一年时善待自己,而 Shahroo Izadi 改变游戏规则的《善良方法》将教你做到这一点。无论您是在上下班途中收听,还是在冬夜蜷缩在家里,这本自助有声读物都会向您展示如何让自己休息一下并以应得的善意对待自己是做出持久改变的关键。在《你怎么了?》一书中,奥普拉·温弗瑞和布鲁斯·佩里博士阐述了我们的童年经历和过去的创伤如何帮助我们了解我们的个性以及成年后面临的挑战。温弗瑞分享了自己的经历,佩里则在大脑发育和创伤方面进行了开创性的研究,这本有声读物将帮助你了解过去经历的影响,并为你提供实用的工具来建立韧性,开始你的康复之旅。喜剧演员玛蒂·安霍尔特的有声读物《如何离开你的精神病患者》有趣又贴切,提供了如何摆脱控制或虐待关系的建议。安霍尔特解释了控制伴侣使用的策略,从煤气灯操纵到负面评价,并分享了在热恋期很容易被忽视的危险信号,帮助你了解为什么你选择了错误的伴侣类型。如果你和一个不为你服务的人在一起,她的个人故事和建议将帮助你逃离,过上自由和自信的生活。对于前谷歌员工莫·高达特来说,有一种方法可以设计任何东西,让它更好地发挥作用,甚至幸福。在《解决幸福问题》中,Gawdat 解释了如何通过改变我们的思维方式并学习如何避免他所谓的“不幸福陷阱”,即使在最具挑战性的时期,我们也可以让幸福成为我们的默认设置。Gawdat 最畅销的自助有声读物提供了一些实用的方法,可以让您的生活更加快乐,适合任何想要学习如何让每一天都感觉更充实的人,无论他们面临什么挑战。由于日常生活及其不确定性会以多种方式引发焦虑,《如何平静你的心》应该出现在每个人 2023 年的阅读清单上。在这本有声读物中,生产力专家 Chris Bailey 分享了他的倦怠经历如何让他发现如何管理焦虑并找到平静。从在线和离线处理压力情况的解决方案到如何处理因我们对“忙碌”的痴迷而导致的压力,《如何平静你的心》将为您提供一套策略工具包,帮助您以您想要的方式开始新的一年。在畅销的自助有声读物《依恋》中,了解您和伴侣的依恋风格如何帮助您找到真爱并保持关系蓬勃发展。《依恋》由精神病学家和神经学家 Amir Levine 和心理学家 Rachel SF Heller 撰写和讲述,并包含大量案例研究和见解,它将告诉您在关系中您是焦虑型、回避型还是安全型。要参与,用户必须拥有 Goodreads 帐户,因为它需要登录才能投票。投票者可以通过单击列表中每个标题旁边的“为这本书投票”链接对现有书籍进行评分。对于未包含在列表中或无法找到的书籍,用户可以单击“将书籍添加到此列表”选项卡并从自己的图书馆中选择或使用搜索功能。Attached。由精神病学家和神经学家 Amir Levine 和心理学家 Rachel SF Heller 撰写和讲述,包含大量案例研究和见解,Attached 将教您如何在人际关系中应对焦虑、回避或安全。要参与,用户必须拥有 Goodreads 帐户,因为它需要登录才能投票。投票者可以通过单击列表中每个标题旁边的“为这本书投票”链接对现有书籍进行评分。对于未包含在列表中或无法找到的书籍,用户可以单击“将书籍添加到此列表”选项卡并从自己的图书馆中选择或使用搜索功能。Attached。由精神病学家和神经学家 Amir Levine 和心理学家 Rachel SF Heller 撰写和讲述,包含大量案例研究和见解,Attached 将教您如何在人际关系中应对焦虑、回避或安全。要参与,用户必须拥有 Goodreads 帐户,因为它需要登录才能投票。投票者可以通过单击列表中每个标题旁边的“为这本书投票”链接对现有书籍进行评分。对于未包含在列表中或无法找到的书籍,用户可以单击“将书籍添加到此列表”选项卡并从自己的图书馆中选择或使用搜索功能。
Sterling和Wilson Reenwable Energy Limited(SWREL)是全球纯游戏,端到端可再生工程,采购和建筑(EPC)解决方案提供商。该公司为公用事业规模的太阳能,浮动太阳能和混合和储能解决方案提供EPC服务,总投资组合超过19.4 GWP(包括委托的项目和各个阶段的建设阶段)。SWREL还管理8.2 GWP太阳能项目的操作和维护(O&M)投资组合,包括第三方构建的项目。今天在28个国家 /地区,斯特林和威尔逊可再生能源有限公司在印度,东南亚,中东,非洲,欧洲,澳大利亚和美洲都有业务。
靶向基因传递到大脑是神经科学研究的关键工具,并且具有治疗人类疾病的重要潜力。然而,通常通过入侵注射限制其适用的研究范围和临床应用的范围,通常通过侵入性注射来进行常见基因载体(例如腺相关病毒(AAV))的特定地点传递。另外,集中的超声血脑屏障开口(FUS-BBBO)进行了无创,可以从系统性循环中使AAVS进入大脑的位点特异性进入。但是,当与天然AAV血清型结合使用时,该方法的转导效率有限,并且会导致周围器官的实质性不良转导。在这里,我们使用高吞吐量在体内选择来设计新的AAV矢量,专门设计用于FUS-BBBO位置的局部神经元转导。所产生的载体显着增强了超声靶向的基因递送和神经元的偏移,同时减少了周围转导,从而在两种经过测试的小鼠菌株中靶向特异性的靶向提高了十倍以上。除了增强非侵入性基因递送到特定大脑区域的唯一已知方法外,这些结果还建立了AAV矢量为特定物理递送机制而进化的AAV量的能力。
Mark自2015年以来一直是英国私人技术公司Reaction Engines的首席执行官。他正在领导开发高级航空推进系统,用于高音和下一代太空访问系统,开拓新市场,并建立具有强大可持续性的应用技术业务。在2019年,该公司在美国进行了超声波(马赫5+)冷却技术的突破性演示,为新的高速航空航天可能性打开了大门,马克的团队目前正在为皇家空军带来一项新型的Hypersonic项目。
笔记!这是原始文章的平行副本。您的平行副本在页面布局和打印样式方面可能与原件有所不同。请注意!这是原始文章的电子自存档版本。此重印本在页码和印刷细节上可能与原版有所不同。请在参考文献中注明原始来源:Hakonen, M., Ikäheimonen, A., Hultèn, A., Kauttonen, J., Koskinen, M., Lin, F.-H., Lowe, A., Sams, M., & Jääskeläinen, IP (2022)。人类大脑对有声读物的处理受到文化家庭背景的影响。脑科学,12 (5), 649。https://doi.org/10.3390/brainsci12050649 © 2022 作者版权所有。获得瑞士巴塞尔 MDPI 授权。本文为开放获取文章,根据知识共享署名(CC BY)许可条款分发(https://creativecommons.org/licenses/by/4.0/)。
1 阿尔托大学科学学院神经科学与生物医学工程系大脑与思维实验室,00076 埃斯波,芬兰; arsi.ikaheimonen@aalto.fi (人工智能); anastasia.lowe@aalto.fi(阿尔及利亚); mikko.sams@aalto.fi (微软); iiro.jaaskelainen@aalto.fi(IPJ) 2 哈佛医学院麻省总医院放射科,美国马萨诸塞州波士顿 02114 3 于韦斯屈莱大学体育与健康科学学院,芬兰于韦斯屈莱 40014 4 阿尔托大学科学学院高级磁成像中心,芬兰埃斯波 00076 5 阿尔托大学科学学院神经科学与生物医学工程系成像语言,芬兰埃斯波 00076; annika.hulten@gmail.com 6 数字商务,Haaga-Helia 应用科学大学,00520 赫尔辛基,芬兰; janne.kauttonen@gmail.com 7 赫尔辛基大学医学院,00014 赫尔辛基,芬兰; miika.koskinen@hus.fi 8 Sunnybrook 研究所,加拿大多伦多,ON M4N 3M5; fhlin@sri.utoronto.ca 9 多伦多大学医学生物物理学系,加拿大安大略省多伦多 M5G 1L7 10 MAGICS 基础设施,阿尔托大学阿尔托工作室,02150 埃斯波,芬兰 11 国际社会神经科学实验室,认知神经科学研究所,国立高等经济学院,101000 莫斯科,俄罗斯 * 通讯地址:maria.hakonen@aalto.fi
关于CDP CDP是一家全球非营利组织,促使公司和政府减少其温室气体排放,保护水资源并保护森林。投资者投票赞成的第一名气候研究提供商,并与资产为106万亿美元的机构投资者合作,我们利用投资者和买方权力来激励公司披露和管理其环境影响。超过50%的全球市值超过50%的公司在2020年通过CDP披露了环境数据。这是披露的数百个城市,州和地区的补充,使CDP的平台成为全球有关公司和政府如何推动环境变化的最丰富信息来源之一。CDP是WE Mean Business联盟的创始成员。访问https://cdp.net/en或关注我们@CDP以了解更多信息。
摘要。聚合物纳米复合材料是晚期纳米材料,与纯聚合物相比,各种机械,热和屏障性能都具有显着改善。聚苯乙烯/氧化铝纳米复合材料是通过超声辅助溶液铸造方法制备的,在填充载荷范围为0.2至2%,并且在不同的超声频率下,即。58 kHz,192/58 kHz,430 kHz,470 kHz和1 MHz。对复合材料进行了机械性能测试(拉伸和撞击测试)和空化侵蚀测试,以研究功能性能的增强。填充物分散体。通过SEM分析和复合材料的功能性增强,研究了频率对基质中填充物分散体的影响。与纯种聚合物相比,以双(高/低)频率(192/58 kHz)制备的复合材料在低填充载荷下显示出更好的性质增强,并在没有超声波的情况下制备了复合材料,从而增强了超声辅助合成的发现,是纳抗体的合成的有益方法。关键字:超声;纳米复合材料;分散;机械性能;空化侵蚀