b' 在示例 13.1 的解决方案中,第二行应为:但是,64QAM OFDM 信号表现出...。最后一句应为:82-dBm PSK OFDM 信号具有大致相同的行为。请注意,此校正会影响此示例之后的增益计算。'
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
摘要目的:这项研究的主要目的是评估大型现场镉泰特脲(CZT)摄像机在单个photon发射计算机断层扫描(SPECT)图像(SPECT)图像上估计甲状腺摄取(TU)的能力,而与平面相比,与平面校正相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,与平面相比,这是一系列23个对定对不到的。次要目标是确定示踪剂给药的辐射剂量和其他计算机断层扫描(CT)扫描。方法:使用甲状腺幻影,用于平面,Tomo-AC和Tomo-NoAC图像确定跨校准因子。然后,在5个拟人化幻像上进行以甲状腺为中心的平面和SPECT/CT,活性在0.4至10 MBQ上进行,在服用79.2±3.7 MBQ后[99m TC] TC] - 特雷切酸酯的23例患者。我们估计拟人化幻象的绝对甲状腺活性(ATHA)和患者的TU。辐射剂量还使用国际放射学保护委员会(ICRP)报告和VirtualDose TM CT软件确定。结果:对于Planar,Tomo-AC和Tomo-NoAC图像,跨校准因子分别为66.2±4.9、60.7±0.7和26.5±0.3计数/(MBQ S)。对平面,Tomo-AC和Tomo-NoAC图像的理论和估计的ATHA在统计上高度相关(r <0.99; p <10 –4),理论ATHA和估计的ATHA之间的相对百分比差异为(8.6±17.8)(8.6±17.8),(8.6±17.8),(-1.3±5.2)和(-1.3±5.2)和(12.8±5.7±5.7)%,相应相差。有效和您的ROID吸收剂量分别为(0.34 ct + 0.95 nm)MSV和(3.88 ct + 1.74 nm)MGY。基于不同图像对(平面与Tomo-Ac,Planar vs Tomo-Noac和Tomo-Ac vs Tomo-Noac)之间的TU进行比较显示出统计学上很重要的相关性(r = 0.972、0.961和0.961和0.935; p <10 –3)。结论:在新一代CZT大型摄像机上使用平面和SPECT/CT获取的ATAS估计是可行的。此外,在Spect/ct
在大型语言模型(LLMS)中(也称为charcter概括)中可自定义的角色扮演,人们对其在开发和部署角色扮演的对话代理方面的多功能性和成本效率引起了人们的关注。本研究探讨了一种大规模数据合成方法,以配备LLM具有特征生成能力。我们首先使用角色中心的角色综合大规模角色概况,然后探索两种策略:响应重写和响应生成,以创建与角色一致的教学响应。为了验证我们的合成教学调谐数据的有效性以进行角色泛化,我们使用Llama-3 8B模型执行监督的微调(SFT)。我们表现最好的模型增强了原始的Llama-3 8b指导模型,并实现了与角色扮演对话的GPT-4O模型相当的性能。我们发布了1个合成字符和指导对话,以支持公共研究。
I.任务超智能即将到来(Bostrom 2017,Ashenbrenner 2024)。首先是由大型语言模型(Sakana 2024)完全设计,研究和撰写的第一批研究论文。与此前景相比,本文报告的成就是适中的。我们提示要做的GPT所做的只是摘要。对于法律界而言,这个谦虚的步骤是一个很大的一步。在我们的项目中,GPT不仅概括了单个文本。它正在撰写欧洲人权法院完整法学的结构化摘要,该法院对欧洲人权公约保护的基本自由之一。gpt在Art 11 Echr的保护下写了有关集会自由的评论。文本以评论的欧洲大陆传统编写。输出的组织方式与欧洲法律奖学金的大部分工作方式相同 - 除了作者被从方程式中取出。正如我们所证明的那样,输出看起来完全像人为写的评论。实际上它甚至表现出色。GPT评论比人类法学家撰写的竞争文本更全面,功能更大。当它可以访问其自己的评论时,GPT更有可能正确地预测欧洲人权法院的实际裁决(后),与获得其最认真的竞争对手(法院登记册已经准备的指南)相比。我们的练习结果可在此处获得:
**注意:某些技术术语和科学概念可能不会直接从英语到萨摩亚翻译。在许多情况下,在括号中的翻译旁边提供了英语术语;但是,翻译的文本仍然可能包含错误或不一致。
图2。适应性的光学设置(A)照明系统(顶部)和管镜(底部)。灯由1 W白色的LED提供,该LED可以单独使用或带有磁连接的冷凝器。也可以添加RGB LED环以提供Darkfield照明。显微镜使用标准显微镜镜头,该镜头通过3D打印的管镜安装在覆盆子Pi HQ摄像机上。管镜包括一个光学双线,用于场校正。(b)使用40倍物镜镜头和不同的照明方式示例图像。tardigrade仅用LED(左上),冷凝器(右上角),Darkfield投影仪完全(左下)(左下)或一半的投影仪进行照明,或者是斜胶带的一半,以进行扩散(即克里斯蒂安森照明或伪动物;右下)。(c)使用带有和不带F50双重透镜的40倍物镜镜头获得的图像质量进行比较。没有冷凝器光(通常用于低放大倍数),不需要多余的镜头。使用冷凝器(右下角)时,可以实现图像质量的实质性提高。
摘要 - 交互式社交机器人助手必须在复杂而拥挤的空间中提供服务,同时根据实时人类语言命令或反馈来调整其行为。在本文中,我们提出了一种新型的混合方法,称为社会机器人计划者(SRLM),该方法集成了大型语言模型(LLM)和深度强化学习(DRL),以浏览人体充满的公共空间并提供多种社会服务。srlm实时从人类中的命令中注入全球计划,并将社会信息编码为基于LLM的大型导航模型(LNM),以进行低级运动执行。此外,基于DRL的计划者旨在维持基准测试性能,该性能由大型反馈模型(LFM)与LNM混合,以解决当前文本和LLM驱动的LNM的不稳定性。最后,SRLM在广泛的实验中表现出了出色的表现。有关此工作的更多详细信息,请访问:https://sites.google.com/view/navi-srlm。
语言、读写和交流 口语角色扮演:超级英雄总部 口语任务:关于我的全部介绍(个人) 说服:课堂讨论,提出建议,纳入小组电子邮件,说服邪恶豌豆归还伊万 DC 阅读 小说:Supertato 非小说:与现实生活中的超级英雄相关的书籍。超级英雄主题的漫画和故事。语音:Jolly Phonics。通过声音进行个人/小组进步。阅读:通过牛津阅读树计划进行个人进步。写作类型:说服 拼写:通过 NFER 拼写资源进行个人进步。高频词。拼写:半学期评估。手写 - 通过使用草书形成的连接进行个人进步。威尔士语发展 Tric a Chlic 语音和阅读方案。Fflic a Flac 方案书籍。Ffa La La 音乐。类型:Dyma Fi 类型:字母 包含超级英雄主题的句型 每日练习 班级吉祥物:Ioan Y Dafad
迷你启动子在体外比CAG强。(a)使用基于流式细胞术的体外测定法对有希望的迷你启动候选者的活性进行了验证。启动子候选物被克隆在双重孢子质粒中的McLover3上游,该质粒还包含TDTOMATO(RFP)表达盒,该盒被用作内部转染对照。启动子活性被量化为单个活的TDTOMATO+细胞中McLover3和TDTomato的中位荧光强度的比率。(b)使用双报告基因测定法分析,启动子在小鼠N2a和人HuH7细胞中的相对表达。(c)NGS表达(条形码)和独立测定表达(蛋白质荧光)的强相关性表现出对高通量筛选和生物信息学命中选择的预测能力的高信心。