摘要:氧化石墨烯(GO)在生命科学中受到了越来越多的关注,因为它具有各种应用的潜力。尽管GO通常被认为是生物相容性的,但在某些情况下可能会对细胞生理产生负面影响。在这里,我们证明,GO的细胞毒性取决于细胞粘附状态。在非粘附状态下的人类HCT-116细胞比处于粘附状态的细胞更容易受到影响。凋亡是通过在粘附和未粘附细胞中的GO部分诱导的,这表明凋亡诱导并不能解释GO的选择性作用对非粘附细胞的选择性作用。GO治疗迅速降低了非粘附细胞的细胞内ATP水平,但在粘附的细胞中却没有降低,这表明ATP耗竭是造成GO诱导细胞死亡的主要原因。同时,自噬诱导是能量稳态的细胞反应,在非粘附细胞中比在粘附细胞中更明显。总体而言,我们的观察结果为GO对细胞粘附状态的作用提供了新的见解。由于消除未粘附的细胞在预防癌症转移方面很重要,因此GO对非粘附细胞的选择性有害作用表明其在癌症转移中使用的治疗潜力。
相反,它作用于次要元素,这些元素对选择性中性或有害进化变化产生的原发性元素的有害作用(Covello&Gray,1993; Gray等,2010; Stoltzfus,1999)产生的原发性效果。在建设性中性进化期间,选择性中性进化过程和选择共同创建复杂而复杂的结构或行为模式。中性进化过程产生了无用或有害的主要元素,而自然选择产生了次要元素,从而使主要元素对生物体功能的负面影响产生了负面影响。由于选择性中性进化过程,最初以简单形式产生的结构的复杂性逐渐增加,因为原始原始元素被补充了新的二级元素,这些元素中和基本元素的不良反应以维持生物体的功能状态。这些次要元素的出现可能会产生一个进化陷阱 - 一旦出现,它们就会增加其他主要元素通过中性进化过程(例如诱变的作用)积累的可能性,因为它们的负面影响会立即被神经化。这将产生选择压力,以开发进一步的次要元素,以消除由中性进化过程产生的新元素的其他负面后果。结果,整个系统变得越来越复杂,由两种类型的元素组成的新兴结构可能
由危害呼吸道病毒引起的感染的临床标志由肺炎组成,肺炎可以发展为急性肺损伤(ALI)和全身表现,包括高透明,血管功能障碍和内皮炎。疾病结果在很大程度上取决于宿主产生的免疫反应。感染的某些可怕后果的生物分子机制部分是由异常产生炎症分子产生的,这是一种称为“细胞因子风暴”的事件。因此,除了抗病毒疗法外,还在研究了能够预防细胞因子过量损伤的分子。利用黑皮质素肽及其受体,这是内源调节系统的成分,其发挥明显的抗炎和免疫调节性侵蚀可能是控制疾病进化的有效治疗策略。使用天然或合成配体利用黑色素质素系统可以形成现实的基础,以抵消呼吸道病毒感染的某些有害作用。黑色皮质素受体激活后采取的中央和周围保护作用可以使触发细胞因子风暴和内皮功能障碍的有害事件,同时维持引起修复机制所需的有益信号。黑素皮质素安全的长期证据鼓励这种方法。
摘要:结直肠癌(CRC)是全球重要的健康问题,在全球癌症中排名第二,在癌症中排名第二。虽然只有一小部分CRC病例才能归因于遗传基因突变,但由于体细胞突变,大多数出现。新兴证据表明,肠道菌群营养不良是一个因素,其中聚酮化合酶合酶阳性大肠杆菌(PKS+ E. coli)在CRC发病机理中起关键作用。pks+细菌产生共糖蛋白,这是一种遗传毒性蛋白,对宿主结肠细胞内的DNA产生有害作用。在这篇综述中,我们研究了肠道菌群在结肠癌发生中的作用,阐明了结肠癌产生细菌如何诱导DNA损伤,促进基因组不稳定性,破坏肠道上皮屏障,诱导粘膜炎症,调节宿主免疫反应并影响细胞周期细胞周期动力学。共同促进了有利于肿瘤开始和进展的微环境。了解PK+细菌介导的CRC发育的基础机制可能为大规模筛查,肿瘤的早期检测以及诸如微生物群调节,细菌靶向治疗,检查点抑制Colibactin生产和免疫调节途径等治疗策略铺平道路。
背景和目的:研究表明,鉴于其镇静和欣快的影响以及在相对较短的时间框架中反复使用,可待因和可待因的产品在药丸和糖浆形式中具有确定的滥用潜力。其使用,滥用和依赖已成为全球新兴的公共卫生问题。因此,这项研究研究了含咳嗽糖浆对成年大鼠睾丸的可待因的影响。方法:二十只大鼠(110-200g)分为四组A组,分别为五只大鼠。A组(对照)仅接受饲料和水。B组(低剂量组)接受了10.95mg/kg体重,C组(中剂量组)接受了21.90mg/kg体重,而D组(高剂量组)每天通过口腔插管每天接受43.80mg/kg体重的体重。在实验结束时,将睾丸收获,称重和加工,以进行精确评估。结果:与对照相比,只有低剂量组的精液分析值显着(p <0.05)。在所有睾丸的组织学特征中均未观察到有害作用。结论:总而言之,这些结果提供了来自开创性分析和组织学的初步证据,表明含可待因的止咳糖浆对睾丸没有不利影响。
摘要:结直肠癌(CRC)是全球重要的健康问题,在全球癌症中排名第二,在癌症中排名第二。虽然只有一小部分CRC病例才能归因于遗传基因突变,但由于体细胞突变,大多数出现。新兴证据表明,肠道菌群营养不良是一个因素,其中聚酮化合酶合酶阳性大肠杆菌(PKS+ E. coli)在CRC发病机理中起关键作用。pks+细菌产生共糖蛋白,这是一种遗传毒性蛋白,对宿主结肠细胞内的DNA产生有害作用。在这篇综述中,我们研究了肠道菌群在结肠癌发生中的作用,阐明了结肠癌产生细菌如何诱导DNA损伤,促进基因组不稳定性,破坏肠道上皮屏障,诱导粘膜炎症,调节宿主免疫反应并影响细胞周期细胞周期动力学。共同促进了有利于肿瘤开始和进展的微环境。了解PK+细菌介导的CRC发育的基础机制可能为大规模筛查,肿瘤的早期检测以及诸如微生物群调节,细菌靶向治疗,检查点抑制Colibactin生产和免疫调节途径等治疗策略铺平道路。
在最常见的痴呆症阿尔茨海默病领域,环境因素的影响因其对全球健康的重大负担而引起了人们的强烈好奇。最近的调查揭示了这些环境因素是主要因素,为它们的深远影响提供了新的见解。值得注意的是,新出现的证据强调了各种环境污染物在阿尔茨海默病的发病率和进展中的有害作用。这些污染物的范围很广,包括充满臭氧的空气污染物、铅、铝、锰和镉等神经毒性金属、具有潜在影响的杀虫剂以及无处不在的塑料和微塑料。通过细致地探究环境污染物和这种毁灭性的神经系统疾病之间错综复杂的联系,本章深入探讨了它们作为阿尔茨海默病的重要风险因素的作用。此外,它还探讨了这些污染物发挥影响的潜在分子机制,旨在揭示导致该疾病发病机制的复杂相互作用。此外,本章提出了减轻这些环境污染物对大脑健康的有害影响的潜在策略,最终目标是恢复和保持典型的认知功能。通过这种全面的探索,我们旨在增强对神经毒素和阿尔茨海默病之间多方面关系的理解,为开发创新的体内模型和提高我们对这种使人衰弱的疾病背后的复杂病理过程的认识奠定坚实的基础。
抽象中风是世界上大部分地区的死亡原因和残疾的主要原因。尤其是中国面临着中风的最大挑战,因为人口很快。在数十年的临床试验中,没有神经保护剂在主要临床终点上具有可重复的功效,因为再灌注可能是神经保护需要临床上有益的。幸运的是,溶栓和血管血管血栓切除术的成功使我们进入了急性缺血性中风(AIS)疗法的再灌注时代。脑细胞保护剂可以预防缺血的有害作用,因此在再灌注前“冻结”缺血性阴茎,扩展了再灌注疗法的时间窗口。由于再灌注通常会导致再灌注损伤,包括流血转化,脑水肿,梗塞进展和神经系统恶化,因此细胞保护剂将通过预防或减少再灌注损伤来增强再灌注疗法的疗效和安全性。因此,再灌注和细胞保护剂是AIS治疗中互惠互益的一对。在这篇综述中,我们概述了在AIS的急性阶段缺血或缺血/再灌注后阴影内导致细胞死亡的关键病理生理事件,重点是兴奋性毒性和自由基。我们讨论了细胞保护疗法的关键药理靶标,并评估了通过临床试验进行的细胞保护剂的最新进展,突出了多坐菌剂的细胞保护剂,这些剂在缺血性和再灌注级联的多个水平上进行干预。
摘要。- 目标:活性氧(ROS)是在细胞内产生的,并在生理条件下作为基础细胞过程中的第二个使者。尽管与氧化应激相关的高级ROS的有害作用已经很好地确定,但尚不清楚发育中的大脑如何对氧化还原变化反应。我们的目的是研究氧化还原改变如何影响神经发生及其基础的机制。材料和方法:我们在过氧化氢(H 2 O 2)孵育后研究了体内小胶质细胞极化和神经原质。在体内量化细胞内H 2 O 2水平,使用了一种转基因斑马鱼线,使用了ES超级和称为TG(ACTB2:HYPHY3)KA8。然后,对N9小胶质细胞,三维神经干细胞(NSC) - 乳腺癌共培养和条件培养基进行了研究,以理解氧化还原调节后神经创造的变化的基础机制。结果:在斑马鱼中,暴露于H 2 O 2的胚胎神经发生,在小胶质细胞中诱导M1极化,并触发了Wnt/β-catenin途径。n9小胶质细胞的实验表明,暴露于H 2 O 2导致小胶质细胞的M1极化,并且该极化是由Wnt/β-catenin途径介导的。氧化还原的小胶质细胞调节,干扰了共培养实验中NSC分化的小胶质细胞。NSC共培养
正确折叠的蛋白对于几乎所有细胞过程至关重要,包括酶催化,信号转导和结构支持。细胞已经发展出复杂的控制机制,例如伴侣和蛋白质抗体网络的帮助,以确保蛋白质正确地成熟并正确折叠并保持其功能构象。在这里,我们回顾了控制关键激素调节剂或葡萄糖稳态折叠的机制。胰腺β细胞中的胰岛素合成始于前胰岛素的产生。在翻译过程中,胰岛素前体涉及内质网(ER)易位机制的成分,这对于预胰岛素信号肽的适当定向,易位和裂解至关重要。这些步骤对于启动Proinsulin的正确折叠至关重要。Proinsulin的可折叠性在ER中进行了优化,该环境旨在支持折叠过程和拆卸债券的形成,同时最大程度地减少错误折叠。这种环境与ER应力反应途径无关,这对胰腺β细胞具有有益的和潜在的有害作用。促硫素的折叠折叠可能导致过多的生物合成载荷,促硫素基因突变或影响ER折叠环境的遗传易感性。错误折叠的促硫蛋白会导致有效的胰岛素产生,并导致糖尿病发病机理。了解蛋白质折叠的机制对于解决糖尿病和其他蛋白质错误折叠的疾病至关重要。