哲学话语传统上可以区分本体论和认识论,并通常通过保持两个学科领域的分离来实施这种区别。但是,这两个领域之间的关系对于物理和物理哲学至关重要。例如,许多与测量有关的问题迫使我们考虑我们对国家的知识和系统的知识(认知观点)及其状态及其状态和可观察到的知识,而与此类知识无关(Ontic Perspective)。这特别适用于量子系统。此贡献提出了一个示例,表明即使是经典系统,也要区分上的描述和认知级别的重要性。在稳定性和信息流的各个方面引入并讨论了对附带和偏见状态及其进化的相应概念。这些方面表明了为什么对表现出确定性混乱的系统尤其重要。此外,这种区别提供了对确定论,因果关系,可预测性,随机性和随机性之间关系的一些理解。
植物的有性生殖是一个复杂且受到严格调控的过程,可产生新一代的散播体:有性种子。传统上,在创造新作物品种的过程中,有性生殖被用来分离或选择性地组装所需的基因和性状。然而,有性的利用也给植物育种带来了限制,包括种子成本高昂且方法耗时。在植物育种过程中,可以通过依次利用有性和无融合生殖来缓解大多数这些限制。无融合生殖是一种协同机制的结果,该机制利用性机制并以协调胚珠发育步骤的方式发挥作用,从而产生无性(克隆)种子。有性发育的改变涉及减数分裂、配子发生以及胚胎和胚乳形成中广泛表征的功能和解剖变化。无融合生殖植物的胚珠跳过减数分裂,形成未减数的雌配子体,其卵细胞发育成孤雌生殖胚胎,中央细胞可能与精子融合,也可能不融合,形成种子胚乳。因此,功能性无融合生殖至少涉及三个组成部分,即无融合生殖 + 孤雌生殖 + 胚乳发育,这些组成部分是从有性生殖改良而来的,必须在分子水平上进行协调,才能完成发育步骤并形成克隆种子。尽管最近在发现与无融合生殖样表型和克隆种子形成相关的特定基因方面取得了进展,但无融合生殖的分子基础和调控网络仍然未知。这是目前无融合生殖育种局限性的核心问题。本期特刊汇集了 12 篇围绕无融合生殖分子基础的不同主题的出版物,展示了最近在理解该性状的遗传调控方面取得的发现和进展,并讨论了无融合生殖的可能起源及其在植物中商业化应用的其他挑战。由于无融合生殖是一种基于有性生殖功能获得或丧失突变的现象的理论仍未得到解决,Barcaccia 等人 [ 1 ] 重新评估了被子植物无融合生殖的进化起源及其替代发育途径,并提出了系统发育和遗传证据,支持无融合生殖是从有性生殖进化而来的,是由于有性发育中关键参与者的分子破坏而导致的。此外,Schmidt [ 2 ] 概述了高等植物无融合生殖的分子方面,并清楚地解释了无融合生殖发育所涉及的调控复杂性,强调了 DNA 和 RNA 结合蛋白以及非编码 RNA 在通过表观遗传调控机制激活和抑制发育程序中的积极作用。同样,Ortiz 等人 [ 3 ] 在以 Paspalum spp. 为例的研究中总结了有关无融合生殖的大量信息。并详细介绍了该属无融合生殖发育的关键方面和所使用的各种遗传分析,包括基因组位点的分子表征、三个生殖候选基因( ORC3 、 QGJ 和 TGS1 )的功能表征以及进一步基于基因组的研究路线图。从不同的植物物种中获得了有关无融合生殖的进一步分子细节。Mateo de Arias 等人 [ 4 ] 使用遗传和细胞胚胎学分析结合应激处理对五个物种进行了研究,以提供大量证据支持多态性
摘要:马铃薯是世界上最重要的非谷类作物,然而,马铃薯的遗传增益传统上一直受到作物生物学的延迟,主要是自交四倍体品种的遗传杂合性和生殖系统的复杂性。新型定点基因改造技术为设计气候智能型品种提供了机会,但它们也为马铃薯育种带来了新的可能性(和挑战)。由于马铃薯品种表现出显著的生殖多样性,并且它们的胚珠倾向于发展出类似无融合生殖的表型,因此对马铃薯生殖基因进行修改正在开辟马铃薯育种的新领域。开发二倍体品种而不是四倍体品种已被提议作为填补遗传增益空白的替代方法,这是通过使用基因编辑的自交亲和基因型和自交系来利用杂交种子技术来实现的。类似地,调节二倍体或四倍体马铃薯中未减数配子的形成和合成无融合生殖可能有助于加强向二倍体杂交作物的过渡或增强基因渗入方案并固定四倍体品种中高度杂合的基因型。无论如何,诱导无融合生殖样表型将缩短开发新品种的时间和成本,因为这样可以通过真种子进行多代繁殖。在这篇评论中,我们总结了目前关于马铃薯生殖表型和潜在基因的知识,讨论了利用马铃薯的自然变异性调节种子形成过程中的生殖步骤的优缺点,并考虑了合成无融合生殖的策略。然而,在我们能够完全调节生殖表型之前,我们需要了解这种多样性的遗传基础。最后,我们设想基因库在这一努力中发挥积极、核心的作用,通过对正确基因型的基因库种质和新引进品种进行表型分析,为科学家和育种者提供可靠的数据和资源,以开发创新,利用市场机会。
生殖健康问题每年影响着全球数亿人,影响着从生育和妊娠结果到更广泛的社会问题,包括人口趋势和医疗保健差距(ACOG,2024)。然而,我们对人类生殖及其相关疾病的知识和理解并不完整。部分原因是生殖健康研究历来被忽视,资金和关注度不成比例地偏向其他医学研究领域(Mercuri and Cox,2022)。决定推出这个生殖健康特刊是出于多种因素。一个关键驱动因素是认识到我们对生殖及其疾病的基本生物学了解仍然很少。加剧这一差距的是,迫切需要强有力的、基于证据的见解,为堕胎和 IVF 等主题的公开辩论和政策提供信息。此外,近期研究方面的突破——例如类器官模型、多组学技术和 CRISPR 介导的基因编辑——为探索长期存在的问题开辟了前所未有的机会,催化了该领域的新势头。特刊中的文章涵盖了广泛的主题,反映了生殖健康研究的多样性和复杂性。几篇文章深入探讨了生殖的神经内分泌调节,探索了大脑和内分泌系统如何协调生殖过程(Sáenz de Miera 等人,2024 年;Qiu 等人,2024 年;Hackwell 等人,2024 年)。其他文章则强调了表观遗传机制,为表观遗传如何变化提供了见解
蚜虫是全球大多数农作物的主要害虫。它们如此成功很大程度上是由于它们生殖方式的可塑性。它们在春季和夏季通过胎生孤雌生殖有效地繁殖,对农作物造成严重损害。夏末,胎生孤雌生殖雌性感知到光周期的缩短,并将此信号传递给胚胎,从而改变其生殖命运,产生有性个体:卵生雌性和雄性。交配后,这些雌性会产下抗寒的卵。早期研究表明,一些编码多巴胺通路关键成分的转录本在长日照和短日照条件下受到调控,这表明多巴胺可能参与了生殖模式转换之前季节性信号的传导。在本研究中,我们旨在更深入地表征该通路的表达动力学,并分析其在豌豆蚜虫 Acyrthosiphon pisum 中的功能作用。我们首先分析了在长日照(无性生殖)或短日照(有性生殖)条件下饲养的蚜虫胚胎和幼虫头中该通路的十个基因的表达水平。然后,我们进行了原位杂交实验,以在胚胎中定位编码多巴胺合成中两种关键酶的 ddc 和 pale 转录本。最后,在有性个体交配后产生的卵子中使用 CRISPR-Cas9 诱变,我们针对 ddc 基因进行了诱变。我们可以在 ddc 突变卵子中观察到强烈的黑色素化默认值,这些卵子可靠地模仿了果蝇 ddc 表型。然而,这种致命的表型使我们无法验证多巴胺作为触发胚胎生殖模式转换所必需的信号通路的参与。
在植物中,胚胎发生和繁殖并不严格依赖于受精。一些物种可以在种子中无性地产生胚胎,这一过程称为无融合生殖。无融合生殖被定义为通过种子进行的克隆无性繁殖,其后代与母体基因型相同,并为开发优良品种提供了宝贵的机会,因为它在农作物中的诱导可以促进优良杂交基因型的开发和维持。在这篇综述中,我们总结了目前对无融合生殖的理解,并重点介绍了将无融合生殖方法成功引入有性作物的情况。此外,我们讨论了几个基因的过表达可以诱导体细胞胚胎发生,作为诱导孤雌生殖的候选基因,孤雌生殖是配子体无融合生殖的一种独特生殖方式。我们还总结了三种实现工程无融合生殖的方案,这将为实现无融合生殖提供更多机会。
本文比较了人类生殖克隆 (HRC) 和可遗传基因组编辑 (HGE),以确定鼓励禁止新型生殖技术的因素。HRC 遭到立法反对,部分原因是它涉及无性生殖,并被错误地与复制联系在一起。HGE 和其他涉及有性生殖的技术没有这些问题。HRC 还卷入了克隆人类胚胎以获取干细胞的研究。HGE 并非如此,因为科学家学会了如何在不创造胚胎的情况下创造和编辑多能干细胞。然而,HRC 的法律历史预测,与胚胎破坏密切相关的生殖技术将面临激烈的反对。未来禁止的目标可能包括:原核移植,一种线粒体替代疗法的亚型,其中两个受精卵被破坏以重建一个;以及体外配子发生,这是一个未来的过程,在这个过程中,夫妇根据他们的基因特征创造数百个胚胎,同时丢弃绝大多数胚胎。 HGE 尚未被禁止,部分原因是一项拨款附加条款阻止了美国食品药品管理局 (FDA) 批准临床试验。如果附加条款被修改,允许考虑纠正导致严重单基因疾病的突变的申请,本文预测立法者不会颁布禁令。然而,如果基因增强在未来变得可行,就会出现棘手的政策问题,包括对后代的影响。国会可能不会讨论这些问题,而是保留附加条款,从而消除了禁止 HGE 增强的必要性。
当前,飞速发展的计算机和数字技术正在进入生活的各个领域。人工智能的快速发展和广泛应用促进了人工智能系统的发展和完善,使得解决科学、技术、医学等各个领域的复杂问题成为可能。本文探讨了人工智能系统的术语和原理,以及在其基础上创建的技术的现代可能性和前景,及其在生殖医学中应用的方向,以解决各种科学问题和实际任务。它们可用于各种疾病和并发症的诊断和风险评估、基因检测及其结果的评估、预测怀孕和评估生育能力、分析生殖细胞、以及选择体外受精计划中获得的最高质量的胚胎,以及解决其他问题。
* 威廉玛丽法学院副教授;哥伦比亚法学院法学博士;哈佛大学文学学士。感谢 Aaron Bruhl、Carl Coleman、Andrea Dennis、Doron Dorfman、Sara Gerke、Laura Heymann、Alli Larsen、Jonathan Kahn、Seema Mohapatra、Nicholson Price、Anya Prince、Glen Staszewski、Charlotte Tschider 以及加州大学戴维斯分校法学院研讨会参与者、第六届年度健康法在研工作会议、第六届年度行政法新奖学金圆桌会议、加州大学黑斯廷斯分校法学院、2021 年 Lutie A. Lytle 黑人女性法学院教师研讨会、2021 年 ASLME 健康法教授会议、2021 年法律与社会协会年会以及 2021 年 Wiet 生命科学法学者研讨会(我曾在这些研讨会上介绍本文的早期版本)提出的有益评论和建议。Majesta-Doré Legnini 和 Anna Jacobeen 提供了出色的研究协助。