protoelectronics设备固体中的能带,E-K图元素和化合物半导体半导体光电材料载体载体有效质量温度和压力的影响,压力和压力对带携带者对携带者的影响protoelectronics设备固体中的能带,E-K图元素和化合物半导体半导体光电材料载体载体有效质量温度和压力的影响,压力和压力对带携带者对携带者的影响
振动状态和能量相互作用(续)•由于振动状态的结果,当光子与场或培养基相互作用时,它可以表现出与有效质量一致的能量特性。对属性的动态习得表明,与周围场的相互作用会影响光子的行为。•表达时光子的有效质量可以作为距离和速度的函数显示,强调光子不仅是一个简单的实体,而且与环境连续相互作用的实体:[\ text {效率{效率} = d^d^3 t^2 + v^2]•这增强了质量的质量,使质量具有动态的依赖性的依赖性的vibron和vertication contion contion temontions contrion contiment and vertication conterications conterications conterications of Dynortions contion and vibritions and vibro依赖于vibron的相互作用。因此,尽管光子在真空中被认为是无质量的,但它们的行为就像在能量状态和振动动力学影响时一样具有质量。
i) 具有抛物线能带和有效质量为 m * 的 2D 半导体。(假设谷简并度为 2。)ii) 石墨烯,我们认为 E > 0 为导带。(E = 0 是能带交叉点,即所谓的狄拉克点。)(假设谷简并度为 2。)
采用随机策略结合群论、图论和高通量计算,系统地扫描了共87种新的单斜硅同素异形体。新的同素异形体中,13种具有直接或准直接带隙,12种具有金属特性,其余为间接带隙半导体。这些新型单斜硅同素异形体中有30多种表现出大于或等于80 GPa的体积模量,其中3种表现出比金刚石硅更大的体积模量。只有两种新的硅同素异形体表现出比金刚石硅更大的剪切模量。详细研究了所有87种Si单斜同素异形体的晶体结构、稳定性(弹性常数、声子谱)、力学性能、电子性能、有效载流子质量和光学性能。五种新的同素异形体的电子有效质量ml小于金刚石硅的电子有效质量。所有这些新型单斜硅同素异形体在可见光谱区都表现出强吸收。结合它们的电子带隙结构,这使它们成为光伏应用的有前途的材料。这些研究极大地丰富了目前对硅同素异形体的结构和电子特性的认识。
摘要:本文研究了轴向施加电场下圆柱形量子点结构的电子学与光学特性,选取四种不同的轴向双曲型势。考虑了一个位置相关的有效质量模型,在求解特征值微分方程时既考虑了有效质量在轴向随约束势变化的平滑变化,也考虑了其在径向的突变。特征值方程的计算同时考虑了狄利克雷条件(零通量)和开边界条件(非零通量),在垂直于施加电场方向的平面内实现,这保证了本文结果对于具有极高寿命的准稳态的有效性。采用对角化法结合有限元法,找到了圆柱形量子点中约束电子的特征值和特征函数。用于求解微分方程的数值策略使我们能够克服异质结构边界平面和圆柱面相交区域中边界条件存在的多个问题。为了计算线性和三阶非线性光学吸收系数以及折射率的相对变化,我们使用了密度矩阵展开中的两级方法。我们的结果表明,通过改变结构参数(例如轴向电位的宽度和深度以及电场强度),可以调整所关注结构的电子特性和光学特性,以获得适合特定研究或目标的响应。
摘要 机器人轻型加工任务正成为弥补人力资源短缺的重要问题。为了提高制造过程的质量、安全性和整体性能,需要对加工操作过程中的力和扭矩进行建模以估计。同时,还开发了数字模型,可以检测故障情况、节省能源和时间并优化实际制造过程。数字孪生就是其中之一,它使用离线和在线数据来模拟物理制造过程。但是,通过开发更精确的数学模型可以进一步提高数字孪生的赋能,从而可以实时模拟物理加工过程。因此,本文提出了一种机器人轻型加工任务的力学公式,以赋能数字孪生。本文采用广义脉冲模型来分析结合线性和角运动的轻型加工任务。为了实现基于脉冲模型的方法,引入了有效质量和有效惯性的概念来反映环境的动态,这取决于材料的硬度和加工任务的工艺参数(进给率和速度(rpm)等)。此外,还考虑了有效质量/有效惯性和最短任务完成时间来计算最佳进给率。此外,还进行了模拟以选择线速度和角速度的可行方向以及轻加工任务的最佳非奇异工作空间。最后,通过执行钻孔和铣削任务,通过定量比较模拟和实验结果来验证所提出的方法。使用 6-DOF 通用机器人 (UR 5e) 进行模拟和实验,以证实所提出的算法对轻加工任务的有效性。所开发的方法无疑将为轻型加工操作中的物理模拟提供数字孪生能力。
当材料的物理尺寸与电子的波长匹配或减小时,半导体中就会发生量子限制,从而产生量化的能级和离散的电子态。这是由于电子的波粒二象性,它同时表现出粒子和波的特征。限制能是对应于半导体纳米结构(如量子点)中电荷载流子的量子限制的能量。当这些结构的尺寸接近或等于电子的德布罗意波长时,就会产生量化的能级。基于有效质量近似并假设一个理想的球形量子点,其中激子被限制在球形限制势中,Harry 和 Adekanmbi (2020) 给出了球形量子点的限制能:
我们提出了一种新的数值工具,旨在探测中子星形地壳的致密层。它基于时间依赖性的Hartree-fock-Bogoliubov理论,该理论具有Brussels-Montreal家族的广义Skyrme核能密度功能。我们使用它来研究中子恒星内皮中通过超流体中子培养基加速的核的时间演变。我们提取低速限制的有效质量。我们观察到阈值速度并指定耗散的机制:声子发射,库珀对破裂和创建涡流环。这些微观效应对于理解各种中子星现象至关重要。此外,我们描述的机制是一般的,也适用于其他速度超级流体,与液体氦气或超速气体等障碍物相互作用。
我们研究了Bloch状态的量子几何形状的影响,特别是通过频带分辨的量子量张量,对三维Pyrochlore-Hubbard模型中Cooper配对和平坦波段超导性的影响。首先,我们准确分析了低洼的两体频谱,并表明配对顺序参数在此四波段晶格中是均匀的。这使我们能够在零温度下在零温度下的多型超导体的超流量之间建立直接关系,以及(i)Ginzburg-landau理论的有效质量,在与临界温度的近端相关性,以及(iii)低 - 元素的VELOCITY ZERE ZERE ZERE ZERE ZERY ZERY goldstoncone nodsone nocy godsone Zery goldstoncone noctone。此外,我们对超流体重量和戈德石模式进行了全面的数值分析,在零温度下探索了它们的常规和几何成分。