摘要:石墨烯纳米纤维(GNR)由于具有高度可定制的物理化学特性和纳米电子学的潜在效用而引起了浓厚的兴趣。除了控制宽度和边缘结构之外,在GNR中包含手性的还带来了另一个维度来微调其光电特性,但是由于缺乏可行的合成策略,相关研究仍然难以捉摸。在这里,我们演示了具有可调手性载体(N,M)的新型Cave-Edged手性GNR(CCGNR)。值得注意的是,(n,2)-CCGNR的带隙和有效质量与n的增加值呈明显正相关,如理论所示。在这个GNR家族中,成功合成了两个代表成员,即(4,2)-CCGNR和(6,2)-CCGNR。两个CCGNR均表现出由沿其外围的掺入[4]螺旋序引起的尤其弯曲的几何形状,也证明了两种相应模型化合物的单晶结构(1和2)也证明了这一点。通过IR,Raman,Raman,Solit-State NMR,UV-VIS和THZ光谱镜以及理论计算的组合,全面研究了(4,2) - 和(6,2) - CCNR的化学身份和光电特性。符合理论期望,获得的(6,2)-CCGNR具有1.37 eV的低光带隙,以及〜8 cm 2 v -1 s -1的电荷载流子迁移率,而(4,2)-CCGNR表现出1.26 EV的较窄频率为1.26 EV,其移动性为〜14 cm 2 v -1 s -1 s -1 s -1 s -1。这项工作为通过操纵手性载体而精确地设计了GNR的带盖和载体移动性的新途径。
BP 在许多领域都具有广泛的应用,如耐腐蚀和耐热涂层 [4,5]、光催化剂和电催化剂 [6,7],以及热管理 [1] 和极紫外光学应用。 [8] 最近,BP 被认为是一种潜在的 p 型透明导电材料 (TCM)。 [9] 这是一个特别有趣的前景,因为在光学透明材料中获得高 p 型电导率仍然是一个尚未解决的挑战。 [10,11] 与其他 p 型 TCM 候选材料不同,多位作者报道了 BP 中的双极掺杂。 [3,5,9,12,13] 因此,BP 可能是具有 p 型和 n 型掺杂能力的透明材料的独特例子。BP 结晶于具有四面体配位的金刚石衍生的闪锌矿结构中。由于B和P之间的电负性差异很小,BP是共价固体,其能带结构与金刚石结构中的Si和C的能带结构非常相似。主要区别在于BP的基本间接带隙大小适中(≈2.0 eV)[14–16],这主要是由于键长适中。虽然该带隙对应于可见光,但BP的直接带隙要宽得多,位于紫外区(≈4.3 eV)。[15–17]预计BP在室温下的间接跃迁很弱[15],这是使BP薄膜足够透明以用于许多TCM应用的关键因素。例如,根据包括电子-声子耦合在内的第一性原理计算,100nm厚的BP膜预计会吸收微不足道的红黄光和不到10%的紫光。 [15] 就电学性质而言,BP 具有由 p 轨道产生的高度分散的价带,从而确保较低的空穴有效质量(0.35 me)。[9] 与金刚石不同,BP 的价带顶位于相对于真空能级相对较浅的能量处。浅而分散的价带通常与高 p 型掺杂性相关,因为更容易形成未补偿的浅受体缺陷。[18,19]
复合费用理论提供了一个简单且统一的图片,以了解量子厅制度中的大量现象学。然而,在单个Landau级别中正确提出这一概念仍然充满挑战,这在强磁场的极限下提供了相关的自由度。最近,在Landau级填充因子ν= 1的玻色子的低能量非交通局部理论已由Dong和Senthil [Z. Dong和T. Senthil,物理。修订版b 102,205126(2020)]。在长波长和小振幅量规的极限中,他们发现它减少了复合效率液体的著名的Halperin-Lee阅读理论。在这项工作中,我们考虑了总填充因子ν=1。与以前的工作不同,可以通过更改玻色子的填充因子来调节混合物中复合费米的数量密度,νB= 1 -νf。这种可调节性使我们能够研究稀数极限νb≪1,从而可以对能量分散剂和复合费米子的有效质量进行受控且渐近的精确计算。此外,通过合理的场理论对低能量描述的近似显然是合理的。最重要的是,我们证明,由于存在复合玻色子冷凝物,量规的弹性获得了希格斯的质量,因此该系统的行为就像真正的landau-fermi液体。与稀有极限中的四边形相互作用无关,我们能够获得该复合费米子费米液体的渐近确切特性。在νf ≪1的相对极限中,希格斯质量为零,随着温度升高,我们发现费米液体和非芬米液体之间的交叉。在实验或数值上观察这些特性不仅提供了不仅是复合费米子及其形成的费米表面的明确证据,而且还提供了由于强相关性而引起的新出现的量规场及其爆发。
近年来,量子纳米光子学领域蓬勃发展,人们对新理论、新器件和新应用的开发兴趣浓厚。“量子纳米光子学”特刊通过评论、观点和研究论文重点介绍了该主题的一些最新进展。本期包含评论和观点文章,全面概述前沿主题。Chang 和 Zwiller [1] 回顾了使用纳米线的集成量子光子学的最新进展,重点介绍了集成发射器、探测器和制造方法。这篇评论还介绍了基于纳米线的量子信息处理和传感应用。Gali [2] 总结了从头算理论,以充分理解固态量子比特,它是量子光子装置中的重要组成部分。该计算方法已应用于激发态、光电离阈值、光激发光谱、有效质量态和自旋动力学的计算。这种方法可以提供超越传统密度泛函理论的洞见,因为传统密度泛函理论无法完全捕捉激发态的特性。生物技术正被用于各种量子光学和光子学,反之亦然。DNA 纳米技术利用 DNA 信息设计和制造用于技术用途的人工核酸结构,已被用于量子发射器领域。DNA 的奇异特性使我们能够在分子水平上抓住量子发射器并控制它们的指向器。Cho 等人 [3] 对相关研究进行了广泛的综述。相反,对量子光学中光物质相互作用的理解为研究化学和生物过程提供了提示。Kim 等人 [4] 综述了基于光与物质与光学谐振器相互作用的丛激子和振动极化子强耦合。作者从强耦合的基本原理、丛激子的结构和特性以及在化学和生物检测中的应用进行了介绍。Kim 等人 [5] 对基于光与物质相互作用的丛激子和振动极化子强耦合进行了综述。 [ 5 ] 讨论了纳米光子共振工程可以实现接近 1 的读出保真度,而这对于提高 NV 量子传感的灵敏度是必需的。该观点深入了解了 NV 量子传感的背景、共振结构的应用以及实际传感中剩余的挑战。Zheng 和 Kim [ 6 ] 讨论了钙钛矿基发光二极管的衰减机制。衰减可能发生在外部和内部过程中,从而对性能和稳定性产生不同影响。其中包括各种关于量子纳米光子学的研究文章。人们对优化可集成到光子电路中并实现实际应用的单光子发射器 (SPE) 的兴趣日益浓厚。Azzam 等人。[7] 展示了使用介电腔对 WSe 2 SPE 的 Purcell 增强。介电腔在 WSe 2 上施加定向应变分布,可以选择性地控制 SPE 的极化状态。徐等人 [8] 报道了一种基于纳米金刚石 (ND) 的高纯度 SPE,其硅空位 (SiV − ) 中心带负电,采用离子注入法。他们成功地阻止了 SiV − 发射极
近年来,量子纳米光子学领域蓬勃发展,人们对新理论、新器件和新应用的开发兴趣浓厚。“量子纳米光子学”特刊通过评论、观点和研究论文重点介绍了该主题的一些最新进展。本期包含评论和观点文章,全面概述前沿主题。Chang 和 Zwiller [1] 回顾了使用纳米线的集成量子光子学的最新进展,重点介绍了集成发射器、探测器和制造方法。这篇评论还介绍了基于纳米线的量子信息处理和传感应用。Gali [2] 总结了从头算理论,以充分理解固态量子比特,它是量子光子装置中的重要组成部分。该计算方法已应用于激发态、光电离阈值、光激发光谱、有效质量态和自旋动力学的计算。这种方法可以提供超越传统密度泛函理论的洞见,因为传统密度泛函理论无法完全捕捉激发态的特性。生物技术正被用于各种量子光学和光子学,反之亦然。DNA 纳米技术利用 DNA 信息设计和制造用于技术用途的人工核酸结构,已被用于量子发射器领域。DNA 的奇异特性使我们能够在分子水平上抓住量子发射器并控制它们的指向器。Cho 等人 [3] 对相关研究进行了广泛的综述。相反,对量子光学中光物质相互作用的理解为研究化学和生物过程提供了线索。Kim 等人 [4] 综述了基于光与物质与光学谐振器相互作用的丛激子和振动极化子强耦合。作者从强耦合的基本原理、丛激子的结构和特性以及在化学和生物检测中的应用进行了介绍。Kim 等人 [5] 对基于光与物质相互作用的丛激子和振动极化子强耦合进行了综述。 [ 5 ] 讨论了纳米光子共振工程可以实现接近 1 的读出保真度,而这对于提高 NV 量子传感的灵敏度是必需的。该观点深入了解了 NV 量子传感的背景、共振结构的应用以及实际传感中剩余的挑战。Zheng 和 Kim [ 6 ] 讨论了钙钛矿基发光二极管的降解机制。降解可能发生在外部和内部过程中,从而对性能和稳定性产生不同影响。其中包括各种关于量子纳米光子学的研究文章。人们对优化可集成到光子回路中并实现实际应用的单光子发射器 (SPE) 的兴趣日益浓厚。Azzam 等人。[7] 展示了使用介电腔对 WSe 2 SPE 的 Purcell 增强。介电腔在 WSe 2 上施加定向应变分布,可以选择性地控制 SPE 的极化状态。徐等人 [8] 报道了一种基于纳米金刚石 (ND) 的高纯度 SPE,其硅空位 (SiV − ) 中心带负电,采用离子注入法。他们成功地阻止了 SiV − 发射极
原子薄材料的高度可调的Moir'E异质结构的出现振兴了二维材料中复杂订单的探索。虽然对二维电子气体(2DEGS)的研究是一种古老的,例如导致发现整数和分数量子厅效应,但由于层之间的晶格间距不匹配或层之间的旋转角度的不匹配引起的Moir'E超级突变性增加了新的复杂性。这是因为纯静电门可以用于调整与完全填充由超级晶格形成的Bloch带所需的电子密度相当的,该级别的波长通常在数十纳米中。(相反,由于少数埃斯特罗姆的晶格尺度周期性,门控能否访问显微镜结构的特征。)除了允许实验者能够在单个样本中访问宽掺杂范围,在这种状态下,传统的2DEG近似将电子分散剂视为有效质量近似中的抛物线,通常不再适当,并且需要考虑到其充实的丰富度,包括与乐队拓扑的现象相连的太多。这些系统的第二个特征是,在相互作用效果等于或超过带宽的相互作用效果中,Moir´e重建的频段通常是“窄”的。因此,Moir´e异质结构已成为探索二维相互作用和拓扑相互作用的重要平台。[2]。)该评论专门用于Moir´e名册的相对较新的参赛者:与六边形硼(HBN)硝酸盐底物对齐的菱形诉状石墨烯(R5G)。首先,让我简要总结实验设置,然后再转向本评论的主要重点:他们的理论分析。(对实验的更详细讨论是在Ashvin Vishwanath的最新评论中(JCCM,2023年12月)。)n -layer菱形石墨烯由石墨烯层组成,这些石墨烯层以楼梯状模式堆叠。沿着堆叠方向捕获物理的层间隧道式汉密尔顿式隧道是让人联想到su-schrieffer-heefer模型,因为低能电子状态是限制在堆栈顶部和底部附近的“零模式”。这些“零模式”的分散体表现出n倍带触摸和从单个石墨烯层∗继承的山谷变性。如果多层的一侧(几乎)与HBN对齐,那么石墨烯和HBN之间的轻微晶格不匹配会强烈修改频带结构,从而导致几乎平坦的频段对垂直位移位移场的应用非常敏感。(许多不同的作品都研究了Pentalyer的单粒子物理;在d的较大值下进行了R5G-HBN [1]的实验,其中单粒子计算名义上给出了Chern数字C =±5的传导带(valleys以相等的和相反的方式,以时间逆转对称性的方式获得了相等和相反的数字),但与其他频段相比隔离很差(这些频段非常小)(非常小)。这使得两个实验结果非常引人注目:
自 1950 年代以来,研究人员一直在研究晶体管的特性和行为,特别关注宽禁带发射极。发表在各种会议和期刊上的论文探讨了异质结构双极晶体管 (HBT)、集成电路和 Si/SiGe 外延基晶体管等主题。研究还检查了温度对晶体管性能的影响,包括在高达 300°C 的温度下的直流和交流性能。研究人员调查了各种材料系统,包括应变层异质结构及其在 MODFET、HBT 和激光器中的应用。研究了 SiGe HBT 中寄生能垒的行为,以及热电子注入对高频特性的影响。其他研究集中于渐变层和隧穿对 AlGaAs/GaAs 异质结双极晶体管性能的影响。已经开发出突变半导体-半导体异质结处隧道电流的解析表达式,并提出了异质结界面处热电子发射电流的新物理公式。本文讨论了有关异质结双极晶体管 (HBT) 的各种研究论文,这种半导体器件兼具双极晶体管和场效应晶体管的优点。这些论文涵盖的主题包括热电子发射、电荷控制模型、器件建模以及基极分级、合金化和应变对 HBT 性能的影响。研究探索了不同材料的使用,包括 GaAs/AlGaAs、InP、Si-Ge 合金和应变层异质结构。这些论文讨论了了解这些材料的电子特性(例如有效质量、带隙和价带不连续性)的重要性。文章还涉及 HBT 中的非平衡电子传输,这对高频性能至关重要。研究人员研究了各种生长技术,包括分子束外延 (MBE) 和化学气相沉积 (CVD),以创建高质量的 HBT 器件。研究论文中的一些主要发现和结论包括:* 了解异质结材料电子特性的重要性* 应变对 HBT 性能和器件特性的影响* 需要先进的生长技术,如 MBE 和 CVD,以创建高质量的 HBT 器件* Si-Ge 合金和应变层异质结构在提高 HBT 性能方面的潜力总体而言,本文中介绍的论文展示了正在进行的研究工作,旨在提高异质结双极晶体管的性能和特性。本文讨论了有关硅锗 (Si/Si1-x Gex) 异质结构的各种研究和研究论文,重点介绍了它们的特性及其在微电子器件中的应用。一项研究使用导纳谱分析了由 Si/Si1-x Gex 异质结构制成的 MOS 电容器。另一篇论文研究了在硅衬底上生长的无应变和相干应变 Si1- x Gex 的电子漂移迁移率。文章还讨论了用于高频应用的碳掺杂 SiGe 异质结双极晶体管 (HBT) 的开发,以及针对低温操作的 HBT 技术的优化。此外,研究人员还探索了应变和重掺杂对 Si/Si1-x Gex 合金间接带隙的影响。论文还涉及各种主题,例如外延 Si 和 SiGe 基双极技术的设计和优化、UHV/CVD SiGe HBT 中集电极-基极结陷阱的影响以及 Ge 分级对 SiGe HBT 偏置和温度特性的影响。总体而言,研究重点是了解 Si/Si1-x Gex 异质结构在微电子器件(包括 HBT 和其他半导体技术)中的特性和应用。本文讨论了 SiGe 基双极晶体管和 III-V 异质结双极晶体管 (HBT) 研究的进展。目标是优化这些器件以用于高性能电子应用,包括高速数字集成电路、模拟电路、微波集成电路和 RF 器件。1993 年至 2002 年期间发表的研究文章探讨了 SiGe HBT 的各个方面,例如针对高电流密度的优化、屏障效应、渡越时间建模和紧凑的电流-电压关系。这些研究旨在提高这些器件的性能和效率。另一个研究领域侧重于 III-V HBT,包括基于 GaAs 的 HBT、AlGaN/GaN HBT 和 GaN HBT。目标是开发用于微波应用的新技术并克服建模和模拟这些器件的挑战。这些研究还调查了不同生长技术的使用,例如金属有机化学气相沉积 (MOCVD),并探索 AlGaN/GaN HBT 选择性区域生长的潜力。总体而言,该研究旨在突破 SiGe 基双极晶体管和 III-V HBT 的可能性界限,从而开发出适用于广泛应用的高性能电子设备。过去几十年来,异质结双极晶体管 (HBT) 的研究得到了广泛的开展。各种研究都探索了它们的潜在应用、优势和局限性。在 2001 年发表在 IEEE Transactions on Electron Devices 上的一篇文章中,研究人员讨论了 HBT 在高频应用中的能力。同一出版物还介绍了 Shigematsu 等人在 1995 年的另一项研究,该研究提出了一种具有改进特性的自对准 InP/InGaAs HBT 的新设计。此外,Low 等人在 1999 年发表的一篇文章。固态电子学杂志探讨了 InGaP HBT 技术在射频和微波仪器中的应用。研究人员强调了它的潜在优势,包括与硅双极晶体管相比更快的开关速度。一些研究也集中于 HBT 的设计和制造。Gao 等人在 1992 年发表在 IEEE 电子器件学报上的一篇文章介绍了一种用于功率应用的异质结双极晶体管设计。在同一期刊上发表的另一项研究中,Gao 等人 (1991) 研究了发射极镇流电阻设计和 AlGaAs/GaAs 功率 HBT 的电流处理能力。微波多指 HBT 中的崩塌现象也得到了广泛的研究。Liu 等人 (1993 年和 1994 年) 在 IEEE 电子器件学报上发表的研究检查了高功率密度对这些器件中电流增益崩塌的影响。此外,Chou 和 Ferro 在 1997 年的会议论文集中概述了异质结双极晶体管,重点介绍了它们的应用和优势。研究人员探索了用于红外光子探测的先进半导体器件概念和技术,旨在提高 III-V 器件的性能。研究人员还致力于通过引入碳掺杂基极来提高 AlGaAs/GaAs 异质结双极晶体管的预期寿命。该研究讨论了工艺技术对自对准 HBT、栅极定义和亚微米栅极长度干蚀刻制造方案的影响。此外,还进行了高温偏压应力测试,以评估具有台面蚀刻结构的 HBT 的可靠性,揭示了它们在各种工作条件下性能的潜在改进。本研究讨论了工艺技术对自对准 HBT、栅极定义和亚微米栅极长度干蚀刻制造方案的影响。此外,还进行了高温偏压应力测试,以评估具有台面蚀刻结构的 HBT 的可靠性,揭示了其在各种操作条件下性能的潜在改进。本研究讨论了工艺技术对自对准 HBT、栅极定义和亚微米栅极长度干蚀刻制造方案的影响。此外,还进行了高温偏压应力测试,以评估具有台面蚀刻结构的 HBT 的可靠性,揭示了它们在各种操作条件下性能的潜在改进。