空中客车防务与航天公司是高性能固态大容量存储器领域的全球领导者,其在轨成功运行的装置超过 30 台,自 2008 年以来一直率先开发和验证用于卫星数据存储的闪存技术。随着 2012 年 SPOT 6 号的首次飞行,CORECI 第一代产品证明了闪存技术在太空环境中的可行性,没有出现 SEFI、闩锁或无法纠正的错误,并且在低地球轨道上的性能与地球相同!
摘要 本文将介绍 SatixFy 为再生处理器有效载荷设计的 SDR ASIC,并从技术和商业角度介绍在现代 UHTS 和 LEO 星座中使用再生处理器的理由。与基本的弯管设计相比,再生有效载荷可提供更高的性能、更低的延迟、支持网状连接、简化非 GEO 星座的实施以及更好的可用性。另一方面,它可能需要更多的机载处理能力并保证面向未来的设计。即确保在卫星的整个生命周期内支持用户所需的通信协议。随着能够在上下行链路方向支持大带宽的软件定义无线电 ASIC 的引入,面向未来的再生有效载荷的实现比以往任何时候都更接近。本文将介绍 Satixfy 为有效载荷设计的 SDR ASIC,包括设计的抗辐射方面。 1. 简介 现代卫星系统,如 LEO 星座和 GEO UHTS,有望实现更高的容量和更低的每 Mbps 成本。然而,这些成本在多个方面需要以不同于过去的系统的方式解决。用户和网关之间要传输的大量信息对网关成本、位置、GEO 和 LEO 星座的效率提出了挑战。本文表明,再生式机载处理有效载荷提供了一种良好的解决方案,而现代硅片和通信技术可以缓解未来防护和功耗等问题。 2. 网关链路和相关挑战 现代 UHTS 卫星和 LEO 星座将以 1Tbps 数量级的速率向用户提供数据服务。网关大小取决于网关链路预算。如 [3] 和表 1 所示,典型的弯管 GEO 前向链路计划在波束峰值上提供 2.6 b/Hz,在峰值 ~9.5dB 时在波束 @ Es/No 上提供 2 b/Hz 平均值。返回链路较差,通常为 ~1-1.5 b/Hz(平均为 1.2b/Hz)。在 LEO 情况下,也采取类似的假设,考虑到由于卫星往返远程用户的移动而导致的更大动态范围变化。在弯管实施的情况下,GW 链路的效率与用户链路相同,平均为 2 b/Hz。在这样的弯管系统中,GW 链路效率与用户链路相同,GW 容量受 Ka 或 Q/V 频段的总带宽可用性限制。1Tbps 卫星将需要 500 GHz 的总 GW 容量。在 Ka 频段使用 2.5 GHz 和 2 个极化将需要 100 个独立的 GW 位置。对于回传信道,载波通常基于 MF-TDMA,大小为 1-10MHz。假设 1:4(现代网络比率)需要 250Gbps 的回传链路。使用平均 5MHz 载波会产生 (@1.2b/Hz, 20% RO) 50,000 个载波。在 LEO 弯管的情况下,复杂性会增加,因为您需要为全球每个覆盖兴趣区在卫星视线范围内设置一个 GW。当覆盖 AERO 和海上路径时,这要求在海洋中设置 GW 位置和相关回程。
CSIR已将C波段分阶段的雷达技术开发到足够的成熟度,以用于监视雷达产品和机载SAR示威者。这些阵列天线提供了宽带功能,可以允许精细分辨率SAR成像 - 如在机载的C-OWL SAR技术演示器上所示。该团队还展示了实时处理功能和精细分辨率(子测量)成像功能 - 使技术更接近于准备太空传播雷达应用程序。通过科学与创新部资助的研究和开发,该技术的某些部分也经过了辐射测试,并且在生产中可以使用第一个具有空间能力的子阵列的设计和开发,可用于实现完整的SAR卫星有效载荷。
将有效载荷封装在立方体卫星结构内,通过标准、定义明确的接口进行通信,大大简化了机载实验的开发和测试。客用有效载荷从托管航天器的主总线接收电力、电信和热控制。控制托管航天器方向的能力使有效载荷操作员能够在不同的光照和黑暗条件下进行测试和实验,或将其指向多个轨道上的全球不同区域。发射和运营成本捆绑在标准服务包中,定价方案可预测,不含非经常性成本,降低了在轨操作有效载荷所需的准入门槛。
徽标品牌,产品,服务和流程名称在此处出现是其关联公司Elbit Systems Ltd.的商标或服务标记,或者在适用其他各自持有人的情况下。本文档中的所有信息仅用于一般信息,并且在不通知的情况下进行更改。©2018。此手册包含Elbit Systems和其他专有信息。EP20-MKT-057EP20-MKT-057
当猎户座火箭与上级分离后,一旦猎户座火箭与上级火箭保持安全距离,立方体卫星就会被部署。每个有效载荷将通过安装在猎户座级适配器上的分配器通过弹簧机构弹出。SLS 计划为立方体卫星提供了辅助有效载荷部署系统,其中包括部署系统、航空电子设备、分配器的安装支架、电缆线束和减振系统。