有效载荷子系统:有效载荷子系统执行 TrustPoint 的替代定位、导航和授时 (PNT) 服务所需的机载处理、RF 信号生成和高精度计时。有效载荷由用于有效载荷计算和波形生成的数字子系统、GNSS 接收器(参见上面的通信系统部分)、用于计时的时钟子系统和用于放大和过滤的 RF 模拟子系统组成。在总线底盘的外部,有效载荷与两个 C 波段发射天线、一个 C 波段接收天线和一个 GNSS 天线连接,所有这些都是共形非可展开贴片天线。总线底盘的外部还安装了一个激光反射器,用于支持高精度轨道测定的激光测距实验。
有效载荷的复杂性 当前和下一代 UAS 都配备了更先进、更复杂的传感器有效载荷,这些有效载荷会生成越来越多的数据。然而,由于目前可用的 BLOS 卫星通信 (SATCOM) 系统的吞吐量有限,因此将传感器数据和视频源从飞机传输到地面已证明具有挑战性。这种限制降低了 UAS 满足其任务要求的能力。由于吞吐量限制,任务规划人员经常被迫做出权衡决定,决定在任务期间使用有效载荷中的哪些传感器。这些权衡可能包括飞行多个架次才能完成任务,从而导致更高的运营成本并延长实现全部任务目标所需的时间。
问:集成过程如何进行?答:国际空间站计划采用有序流程执行集成空间站有效载荷所需的端到端活动。此结构提供可根据每个有效载荷的具体需求和成熟度量身定制的流程。该流程涵盖整个生命周期,从收到资金到返回轨道实验运行的数据结果。集成活动确保您作为有效载荷开发者 (PD) 与计划之间的信息交换及时,并支持集成和飞行准备里程碑。整个过程侧重于及早识别风险和降低风险。将集成视为有序的特定活动阶段的过程,所有活动都旨在将您的有效载荷发射到国际空间站,让其在空间站上运行,并将结果返回给您。
①KHI 宇宙系统产品展示视频 ②KHI 宇宙系统产品展示面板 ③火箭整流罩面板展示模型 ④DRUMS 模型 ⑤有效载荷整流罩分离装置及有效载荷连接件
• 据估计,只有不到 1% 的注射治疗性抗体能到达人体肿瘤,这凸显了考虑其他机制的必要性。• ADC 疗效可能是由靶向有效载荷递送、自由有效载荷暴露和肿瘤亚型敏感性的复杂组合驱动的。• 药物连接体不稳定性和靶标表达会影响 ADC 处置的位点和速率,进而影响有效载荷的肿瘤、组织和全身暴露。• 临床前模型无法准确重现连接体不稳定性(降解或解偶联)在临床中的影响,并且可能过分强调稳定 ADC 的好处。• 抗体偶联有效载荷引起的意外毒性在更稳定的 ADC 偶联技术中显而易见。
♦ 监测地球表面,进行海洋观测及其环境。♦ 提供大气各种气象参数的垂直剖面。♦ 提供数据收集和数据传播能力。♦ 提供卫星辅助搜索和救援服务 (SA&SR)。机载有效载荷:成像仪有效载荷、测深仪有效载荷、数据中继转发器和 SA&SR 转发器。印度工业为其制造做出了重大贡献。GSLV-F14:GSLV-F14 是印度地球同步卫星运载火箭 (GSLV) 的第 16 次飞行,也是第 10 次采用本土低温级的飞行。
在过去的几十年中,抗体-药物偶联物 (ADC) 的开发出现了显著的增长。设计理想的 ADC 是一项多方面的挑战,需要精确协调各种元素,例如抗原、抗体、连接子和有效载荷。虽然 ADC 旨在特异性地靶向肿瘤细胞,但在正常组织中也可以发现几种抗原,这可能会损害 ADC 在治疗应用中的特异性。复杂性延伸到抗体选择,需要有效靶向所需抗原并确保与连接子的兼容性以有效递送有效载荷。此外,连接子和有效载荷的组合对于 ADC 的治疗效率至关重要,平衡循环稳定性和靶标结合后及时释放有效载荷。ADC 剂量必须对正常组织安全,同时确保释放的有效载荷有效。ADC 的成功归因于其与传统化疗药物相比无与伦比的疗效。本研究论文旨在对用于癌症治疗的抗体-药物偶联物 (ADC) 进行技术综述。简要讨论了 ADC 的基础知识、监管方法、概述和量化的技术复杂性。本综述还总结了最近批准的 ADC,并介绍了抗体、连接子和有效载荷的概念。本文还概述了目前处于癌症治疗后期临床试验阶段的癌症特异性 ADC。
简介....................................................................................................................................................................................................................................................................1 计划事件....................................................................................................................................................................................................................................................................2 背景/历史....................................................................................................................................................................................................................................................................................................4 一般特征....................................................................................................................................................................................................................................................................................4 设计特点....................................................................................................................................................................................................................................................................5 设计特色....................................................................................................................................................................................................................................................................5 .......................................................................................................................................................................................................................6 机身.......................................................................................................................................................................................................................................................................................6 起落架.......................................................................................................................................................................................................................................................................8 推进系统.......................................................................................................................................................................................................................................................................8 有效载荷系统.......................................................................................................................................................................................................................9 有效载荷系统....................................................................................................................................................................................... . . . . . . . . . . . .10 飞行控制系统. . . . . . . . . . . . . . .15 液压系统. . . . . . . . . . . . . . . . .20 电气系统. . . . . . . . . . . . . . . . .21 燃油系统. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
摘要:九州工业大学的 BIRDS 卫星计划设计了一个经过飞行验证的 1U CubeSat 平台电气总线系统。该总线利用背板作为子系统和有效载荷之间的机械和电气接口。背板上的电气线路由软件使用复杂可编程逻辑器件 (CPLD) 配置。它允许在多个 CubeSat 项目中重复使用,同时降低成本和开发时间;因此,可以将资源用于开发任务有效载荷。最后,它为集成和系统级验证提供了更多时间,这对于可靠和成功的任务至关重要。目前 CubeSat 发射的趋势集中在 3U 和 6U 平台上,因为它们能够容纳多个复杂的有效载荷。因此,有必要演示电气总线系统以适应更大的平台。本研究展示了可配置电气接口板在两种情况下的可扩展性:能够容纳 (1) 多个任务和 (2) 复杂的有效载荷要求。在第一种情况下,设计了一个 3U 大小的可配置背板原型来处理 13 个任务有效载荷。使用四个 CPLD 来管理现有总线系统和任务有效载荷之间有限数量的数字接口。测量的传输延迟高达 20 纳秒,这对于 UART 和 SPI 等简单的串行通信来说是可以接受的。此外,测量的背板每轨道 ISS 的能耗仅为 28 mWh。最后,设计的背板被证明是高度可靠的,因为在整个功能测试中没有检测到任何位错误。在第二种情况下,与 1U CubeSat 平台相比,可配置背板在具有复杂有效载荷要求的 6U CubeSat 中实施。CubeSat 部署在 ISS 轨道上,初步在轨结果表明设计的背板支持任务没有问题。
罗希尼探空火箭经常用于印度空间研究组织以及来自印度和国外的科学家正在开发的新技术的飞行演示。IAD 的作用是使坠入大气层的物体减速。IAD 最初被折叠起来并放在火箭的有效载荷舱内。在大约 84 公里的高度,IAD 充气,并与探空火箭的有效载荷部分一起坠入大气层。IAD 通过气动阻力系统地降低了有效载荷的速度,并遵循了预测的轨迹。