摘要:飞机被认为是当今人类有史以来最令人印象深刻的工程奇迹之一。在为商业和/或私人航空运输提供服务时,从设计、制造、生产到空中运营、维护和技术培训等各个工程方面,都在不断实现最先进的技术里程碑。在这些工程方面,数字化起着关键作用,因为如今,如果没有数字化,这些奇迹就不可能安全飞行。本研究展示了数字化对这些方面的影响以及人工智能 (AI) 对数字化飞机系统的相互作用,旨在实现系统的最终目标,即在人为因素 (HF) 原则和方法下,系统运行由人为管理,但无人为错误。
用于太空有效载荷的微波专为各种微波频率而设计。它们还能够承受严苛的太空和发射环境。它们为航天器系统中的组件提供电气接口,确保高可靠性。该封装由许多载板组成,基板附着在其上。载板用作金属载体,以支撑蚀刻微波电路的氧化铝基板。基于 CFRP 的载板的自主开发可能取代标准的基于 Kovar 的载板,以将质量减少六倍并使其比现有拓扑更轻。然而,与 Kovar 材料相比,CFRP 的导电性明显较低。较低的导电性直接影响散热、电磁屏蔽、载流能力和表面处理工艺。为了克服这些问题并获得充分的优势,可以将先进的纳米填料碳纳米管 (CNT) 添加到聚合物中。使用 CNT 复合材料不仅可以减轻重量,还可以改善热参数和电参数。本文概述了增强 CFRP 的热性能和电性能的研究,并有助于设计微波封装组件。挑战在于确定合适的制造技术、工艺参数和 CNT 复合材料的特性。
空间系统司令部公共事务办公室 (SSC/PA) 483 N. Aviation Blvd. El Segundo, Calif. 90245-2808
数码港主席陈少文表示:“国家航天科技发展迅速,在国际舞台上取得令人瞩目的成就,我们深感自豪,特区市民能参与其中更是莫大的荣幸。这是香港特区市民首次获选成为预备航天员,有机会亲眼目睹国家尖端科技发展,充分说明国家对香港创新科技人才的培育。数码港及旗下社区企业对此感到十分鼓舞,衷心感谢国家对香港创科发展和人才培育的坚定支持。”作为香港数码科技旗舰及创业孵化基地,数码港将持续培育创科人才及企业,完善蓬勃的创科生态,推动科研及产业发展,配合特区政府的创科发展蓝图,将香港打造为国家国际创科枢纽,融入国家自主创新、自主提升的发展战略,以优质生产力为新动力,助力国家高质量发展。
8025 - 8400 联邦地球探测卫星服务(非联邦视具体情况而定)(非联邦授权需视具体情况进行电磁兼容性分析)
随着长期月球探索和居住的追求越来越接近现实,人们正在广泛努力有效减轻月球表面尘埃的污染和渗透。这种尘埃对人类有害,往往会顽固地粘附在所有暴露的表面上,导致性能问题并最终导致失败。虽然已经开发了几种主动和被动技术来应对这一挑战,但评估这些技术在实际月球环境中的性能极其重要。风化层粘附特性 (RAC) 实验有效载荷为这种评估提供了重要机会。RAC 有效载荷由 Alpha Space 为美国国家航空航天局 (NASA) 设计,计划于 2023 年搭乘 Firefly Aerospace Blue Ghost 着陆器飞往月球。由于可用于此次任务的材料数量有限,因此做出明智的选择至关重要。NASA 兰利研究中心选择了两种聚合物、一种碳纤维增强复合材料和一种金属合金作为多样化的结构材料。每种材料都使用激光烧蚀图案进行地形修改。本文简要介绍了此次月球表面实验所选用的被动式除尘材料和表面的选择和测试程序以及获得的一些结果。
比萨大学,土木与工业工程系 - 航空航天部,意大利比萨 56122 lily.blondel@ing.unipi.it; alberto.sarritzu@ing.unipi.it; angelo.pasini@unipi.it b 米兰理工大学,航空航天、科学与技术系。 (DAER),20156 米兰,意大利 inigo.alforja@polimi.it; michelle.lavagna@polimi.it c 布伦瑞克工业大学,空间系统研究所,38106 布伦瑞克,德国 l.ayala-fernandez@tu-braunschweig.de d 布鲁塞尔自由大学,航空热力学系,1050 Bruxelles,比利时 riccardo.gelain@ulb.be ; patrick.hendrick@ulb.be 和 ONERA/DMPE,图卢兹大学,F-31410 Mauzac,法国 christopher.glaser@onera.fr;杰罗姆·安索因@onera.fr; Jouke.Hijlkema@onera.fr f 德累斯顿工业大学,航空工程学院,01062 德累斯顿,德国 Livia.Ordonjez-Valles@hs-bremen.de; martin.tajmar@tu-dresden.de g 不来梅应用技术学院,28199 不来梅,德国 Livia.Ordonjez-Valles@hs-bremen.de ; uapel@fbm.hs-bremen.de h 柏林工业大学,空间技术系,10587 柏林,德国 e.stoll@tu-berlin.de * 通讯作者
• 地球观测应用(EO 程序): – 用于公共卫生和昼夜循环气候变化的高分辨率大气监测 => 紧凑型痕量气体光谱成像、微型激光雷达 – 用于天气预报的全球对流层测量 => GNSS 无线电掩星接收器、微波辐射计、Ka 波段降水雷达 – 用于海洋监测的全球海况和冰层测量 => GNSS 反射测量接收器、Ka 波段雷达测高 – 陆地、洪水、火灾隐患的变化检测 => 多光谱和高光谱光学成像(VIS/SWIR/TIR)、SAR 和 AI 软件
早期创新部门赞助了一系列旨在推动学术界和工业界、NASA 实地中心和其他研究机构的先进概念和新兴技术的研究。早期创新计划包括:• NASA 创新先进概念 – 专注于前瞻性航空航天系统概念• 空间技术研究补助金 – 专注于先进空间技术的创新研究和为研究生提供空间技术研究奖学金• 小型企业创新研究(也称为 SBIR)和小型企业技术转让(或 STTR)计划 – 旨在让小型企业参与航空航天研究和开发,为 NASA 任务和国家经济注入活力• 百年挑战 – 提供奖励激励,以鼓励公民发明家提出创新解决方案