一个困难的基因组编辑目标是大型遗传构建体的位点特异性插入。我们在此描述了 GENEWRITE 系统,其中 Cas 内切酶的位点特异性靶向活性与人类逆转录转座子 LINE-1 的 ORF2p 蛋白的逆转录酶活性相结合。这是通过提供两种 RNA 来实现的:一种靶向 Cas 内切酶活性的向导 RNA 和一种编码所需插入的适当设计的有效载荷 RNA。我们使用大肠杆菌作为开发和部署的简单平台,表明通过适当的有效载荷设计和辅助蛋白的共表达,GENEWRITE 可以使用所述方法将大型遗传有效载荷插入精确位置,尽管存在脱靶效应。基于这些结果,我们描述了在更复杂的系统中实施 GENEWRITE 的潜在策略。
本文研究了一种可能的解决方案,以采购未来太空探索任务所需的推进剂。这项研究检查了使用电磁发射器(EML)将用于推进剂生产的原材料从月球南极到NASA的Lunar Gateway的可行性。这个提议的空间站位于近汇度光环轨道(NRHO)的月球中,是NASA ARTEMIS计划的关键部分。便宜有效地从表面冰上采购月球氢将使该计划的成功和未来对太阳系的探索有益。本研究调查了月球EML有效载荷的发射要求。Agi Inc.的系统工具套件(STK)用于计算拦截网关所需的启动方位角,高度,幅度,时期和行程持续时间。该模型评估了有效载荷以及网关的径向,交叉轨道和轨道位置和速率,以确定它们在集合处的相对位置和速度。这项研究的结论表明,从Lunar South Pole进行一次发射是可行的,并以可变的发射条件为目标。提出了支持我们假设的证据,这表明可能无法与Rendezvous的空间站的状态向量相匹配。有效载荷将需要额外的推力能力,本文还探讨了这些建议。
并促进寡核苷酸有效载荷的吸收和内化。通过将抗体的细胞和组织选择性与基于寡核苷酸的方法的选择性和效率相结合,Avidity Biosciences 的研究人员已经证明了调节
美国太空军 (USSF)-67 任务计划于明年初从 NASA 肯尼迪航天中心发射。(太空军照片:迈克尔中校
摘要 - 合作移动操作是机器人技术中越来越重要的主题:就像人类需要在许多任务上进行协作一样,机器人需要能够一起工作,例如,在非结构化环境中运输重型或笨拙的物体。但是,移动多机器人系统提出了独特的挑战,例如运动计划的更大配置空间,稳定性问题,尤其是对于轮式移动机器人,非全面约束。为了应对这些挑战,我们提出了一个基于用于轮式移动操作的直接转录公式的多机器人双级优化系统。我们的配方使用静态力,计算出较低级别的稳定性目标,以告知较高级别的车轮轨迹计划。这允许有效的计划,同时确保安全执行并改善实际机器人的开环绩效。我们证明了我们的模型能够解决具有挑战性的运动规划任务,并评估其在ClearPath Husky Mobile平台上改进的现实世界的能力。最后,我们将系统与先前呈现的混合真实接口集成在一起。索引术语 - 多种移动机器人或代理商的多数机器人系统,合作机器人,机器人技术和施工中的自动化的路径规划,车轮机器人
4.3.有效载荷声学环境 ...................................................................................................................... 40 4.4.有效载荷冲击环境 ...................................................................................................................... 41 4.5.有效载荷结构完整性和环境验证 ............................................................................................. 43 4.6.热和湿度环境 ...................................................................................................................... 43 4.6.1.地面操作 ............................................................................................................................. 43 4.6.2.动力飞行 ............................................................................................................................. 44 4.6.3.氮气吹扫(非标准服务) ............................................................................................. 45 4.7.有效载荷污染控制 ................................................................................................................ 45 4.8.有效载荷电磁环境 ................................................................................................................ 46 5.有效载荷接口 ...................................................................................................................... 47 5.1.有效载荷整流罩 ...................................................................................................................... 47 5.1.1.92” 标准 Minotaur 整流罩 ...................................................................................................... 47 5.1.1.1.92” 整流罩有效载荷动态设计包络线 ............................................................................. 47 5.1.2.可选 110” 整流罩 ............................................................................................................. 48 5.1.2.1.110”整流罩有效载荷动态设计包络线 ...................................................................................... 48 5.1.3.有效载荷检修门 ................................................................................................................ 48 5.2.有效载荷机械接口和分离系统 ............................................................................................. 49 5.2.1.Minotaur 坐标系 ............................................................................................................. 49 5.2.2.NGIS 提供的机械接口控制图 ...................................................................................... 51 5.2.3.标准非分离式机械接口 .............................................................................................. 51 5.2.4.可选机械接口 ...................................................................................................... 51 5.2.4.1.有效载荷锥接口 ...................................................................................................... 53 5.2.4.2.双和多有效载荷适配器配件 ...................................................................................... 53 5.2.4.2.1.双有效载荷适配器配件 ...................................................................................... 53 5.2.4.2.2.多有效载荷适配器配件 (MPAF) ................................................................................ 55 5.2.4.2.3.Minotaur V 和 VI+ 有效载荷适配器配件...................................................................... 56 5.2.5.可选分离系统 ............................................................................................................. 57 5.2.5.1.NGIS 38” 分离系统 ............................................................................................. 59 5.2.5.2.行星系统电动光带 (MLB) ............................................................................. 60 5.2.5.3.RUAG 937 分离系统 ............................................................................................. 60 5.3.有效载荷电气接口 ............................................................................................................. 61 5.3.1.有效载荷脐带接口 ............................................................................................................. 61 5.3.2.有效载荷接口电路 ................................................................................................................ 62 5.3.3.有效载荷电池充电 ................................................................................................................ 62 5.3.4.有效载荷指令和控制 ............................................................................................................. 62 5.3.5.烟火引爆信号 ................................................................................................................ 62 5.3.6.有效载荷遥测 ............................................................................................................................. 63 5.3.7.有效载荷分离监视器环回 ................................................................................................ 63 5.3.8.遥测接口 ................................................................................................................ 63 5.3.9.非标准电气接口 ........................................................................................................ 63 5.3.10.电气发射支持设备 ................................................................................................ 63 5.4.有效载荷设计约束 ............................................................................................................. 64 5.4.1.有效载荷质心约束 ............................................................................................................. 64 5.4.2.最终质量属性精度 ............................................................................................................. 64
Space42 PLC (ADX: SPACE42) 是一家总部位于阿联酋的人工智能太空技术公司,该公司整合了卫星通信、地理空间分析和人工智能功能,从太空探索地球。Space42 PLC 成立于 2024 年,由 Bayanat 和 Yahsat 成功合并而成,其全球影响力使其能够满足政府、企业和社区客户快速发展的需求。Space42 PLC 由两个业务部门组成:Yahsat 空间服务和 Bayanat 智能解决方案。Yahsat 空间服务部门专注于固定和移动卫星解决方案的上游卫星运营。Bayanat 智能解决方案部门将地理空间数据采集和处理与人工智能相结合,为决策提供信息,增强态势感知能力,提高运营效率。Space42 PLC 的主要股东包括 G42、Mubadala 和 IHC。
Penguin B 具有可更换的通用有效载荷支架,可在几秒钟内拆卸并用于各种有效载荷。超过 20 升的有效载荷容量和高达 10 公斤的用户定义有效载荷可满足您的特定有效载荷要求。可伸缩万向节等精密有效载荷可安装到机身中,并有效利用可用空间。通用有效载荷支架具有预定的安装点,这些安装点在铝制框架中精确加工,以及可拆卸的压载块,可大大简化有效载荷集成过程。
乳腺肿瘤通常由具有不同基因表达谱的多样化细胞群组成。乳腺肿瘤异质性是导致化疗后耐药、复发和转移的主要因素。抗体-药物偶联物 (ADC) 是具有显著临床成功的新兴化疗药物,包括用于治疗 HER2 阳性乳腺癌的 T-DM1。然而,这些 ADC 经常遭受与肿瘤内异质性相关的问题。在这里,我们表明,含有两种不同有效载荷的均质 ADC 是解决这一临床挑战的有前途的药物类别。我们的偶联物表现出 HER2 特异性细胞杀伤效力、理想的药代动力学特征、最小的炎症反应和治疗剂量下的边际毒性。值得注意的是,在代表肿瘤内 HER2 异质性和耐药性增加的异种移植小鼠模型中,双药 ADC 比同时使用两种单药变体发挥更大的治疗效果和生存优势。我们的研究结果突出了双药 ADC 形式在治疗难治性乳腺癌和其他癌症方面的治疗潜力。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2020年12月21日发布。 https://doi.org/10.1101/2020.12.12.18.423326 doi:biorxiv preprint