摘要:电池电动多个单元(BEMU)是通往部分电气化铁轨线上脱碳的轨道运输的有效途径。作为行业耦合的一种手段,可以通过架空线岛提供的BEMU收集能源需求,可以通过分散的可再生能源(RES)覆盖。因此,可以获得用于铁路运输目的的完全无碳电力。在这项研究中,我们分析了有效充电基础结构定位的成本降低潜力,以及通过直接使用本地生产的可再生电力来覆盖BEMU能源需求的可行性。因此,我们设置了一种基于模型的方法,该方法评估了不同轨道旁电气化替代方案的相关生命周期成本(LCC),以比较本地RES和网格消耗的能源供应。基于模型的方法应用于德国地区铁路线的示例。在架空线岛的情况下,具有现场电池储存的相邻风电厂的电力直接使用会导致相关的LCC 173.4 m/30a,而电网消耗导致176.2 m/30a欧元,而完全电气化会导致224.5 m/30a的全部电气化。与完全电气化相比,取决于现有电气化和线长度,BEMU操作和部分高架线扩展等因素,BEMU操作和部分高架线扩展可能会导致重新开发基础设施的大幅降低。
将多种独立的信号处理策略结合在单个设备中的人工突触是实现类脑计算中高密度集成、能源效率和快速数据处理的关键因素。通过控制功能复杂性,在突触装置中使用由多种材料组成的混合物作为活性成分代表了在突触回路中编码短期增强 (STP) 和长期增强 (LTP) 的有效途径。为了应对这一巨大挑战,本文开发了一种新型 Janus 2D 材料,通过在 2D 二硫化钼 (MoS 2 ) 的两个表面上不对称地涂覆电化学可切换的二茂铁 (Fc)/二茂铁 (Fc + ) 氧化还原对和光响应的光致变色偶氮苯 (Azo) 来制备。通过改变电化学刺激的强度,可以控制 STP 和 LTP 之间的转变,从而触发 MoS 2 上 Fc/Fc + 对的电化学掺杂或控制此类氧化还原物质在 MoS 2 上的吸附/解吸过程。此外,通过激活偶氮苯化学吸附分子的光异构化并因此调节 2D 半导体的偶极子诱导掺杂,可以记录较低强度的 LTP。值得注意的是,电化学和光学刺激的相互作用使得构建人工突触成为可能,其中 LTP 可以提升到 4 位(16 个记忆状态),同时用作 STP。
Heckman 的研究表明,对优质幼儿教育的投资是有回报的。让弱势家庭获得优质的幼儿教育 (ECE) 对经济繁荣至关重要。高质量的项目表明儿童及其父母的经济前景有所改善,使他们能够进入劳动力市场并增加收入,而儿童则获得未来生产所需的基本技能。投资全面的从出生到五岁的幼儿教育也是一种经济有效的方式,可以减轻贫困对儿童发展和成人机会的负面影响——提高技能和生产力,加强家庭,降低社会服务成本。母亲就业对向上流动尤其重要。儿童保育可以提高母亲的教育水平、劳动力参与率和父母的收入。对 ABC/CARE 计划的分析发现,每周五天提供优质的保育和学习,持续五年,使母亲能够重返劳动力市场,为母亲和参与的儿童培养技能,提高职业和收入。2 由于这些收益,仅凭母亲的收入,该计划在五年内就收回了成本。此外,赫克曼还发现,接受佩里学前教育项目治疗的儿童在教育、健康、就业和更强大的家庭生活方面都有所进步,这些进步也传给了他们的孩子。3 因此,投资优质早期儿童项目成为改善经济并消除代际贫困的有效途径。
供电与供热系统的联系不断加强,关于热电联产微电网优化的研究也陆续出现。[1]提出了一种含风电、储能和热电联产机组的微电网多时间尺度优化模型。[2]和[3]利用电锅炉解耦热定额约束,解决了电力系统范围外火电厂的风电消纳问题。[4]在热电联产微电网中引入光热发电站辅助系统运行,为解决光伏发电问题提供了有效途径。[5]—[9]提出了一种电热联合调度模型,利用储热设备增加热电联产机组的弹性。文献 [10][11] 总结了光伏发电与热电联产的组合运行,一般配备一定容量的储热以补偿光伏电力输出的不稳定性。文献 [12] 总结了配备大储热容量的电热系统应对可再生能源消纳问题的应用前景。文献 [13]-[15] 提出了风储联合运行系统,具有一定的可调度性,但储能成本较高,实际应用中需慎重考虑。上述文献对热电联产微电网的讨论,均未考虑微电网运行中的需求响应。
新能源汽车作为缓解城市环境问题的有效途径,已成为研究其在中国的发展现状和未来前景的焦点。针对不同城市新能源汽车产业发展的巨大差异,本研究以中国十个典型城市为研究对象,开发了一个新颖的多属性决策(MADM)框架来评估这些城市推广新能源汽车的前景。研究首先建立一套全面的指标体系,涵盖经济、政策支持、基础设施、技术创新和环境等关键维度,包含五种不同类型的评价信息。该体系融合了五种不同类型的评价信息:精确数、区间数、三角模糊数、犹豫模糊数和概率语言词集(PLTS),增强了框架处理不同数据类型的能力。然后,采用改进的熵(IEntropy)权重法确定评价指标的客观权重。然后将这些客观权重与VIKOR方法相结合,形成一种综合混合评估信息的结构化群体决策方法。基于模块化思维,综合混合评估信息对每个城市的新能源汽车发展前景进行评估和排序。敏感性分析和比较分析进一步证明了所提出的MADM框架的稳健性和可靠性。排序结果表明,上海和广州在新能源汽车推广方面处于领先地位,而哈尔滨和郑州等城市则落后。基于这些发现,本研究提出了有针对性的政策建议,以促进中国主要城市新能源汽车产业的可持续发展。
在能源生产向清洁、可持续方向转变的背景下,微电网成为解决环境污染和能源危机问题的有效途径。随着可再生能源的渗透率不断提高,如何协调需求响应和可再生能源发电是微电网调度领域的关键和挑战性问题。为此,本文提出了一种考虑多利益相关方的孤立微电网双层调度模型,其中下层模型和上层模型分别以实时电价环境下用户成本和微电网运行成本最小化为目标。为了求解该模型,本研究结合Jaya算法和内点法(IPM),开发了一种混合分析-启发式求解方法(称为Jaya-IPM),其中下层和上层分别由IPM和Jaya解决,并通过两层之间的迭代获得调度方案。之后上层模型更新的实时电价和下层模型确定的用电计划通过实时定价机制在上下层之间交替迭代,直至得到最优调度计划。试验结果表明,所提方法能够协调可再生能源发电的不确定性和需求响应策略,实现微网和用户的利益平衡;并且利用需求响应可以充分利用负荷侧的灵活性,在保持供需平衡的同时实现调峰。此外,实验证明Jaya-IPM算法在优化结果和计算效率方面优于传统的混合智能算法(HIA)和CPLEX求解器。与HIA和CPLEX相比,所提方法使微网净收益分别提升10.9%和11.9%,用户成本降低6.1%和7.7%;计算时间分别减少约90%和60%。
A.基因函数分析基于CRISPR的功能筛选(基因敲除或激活)将基因型的变化连接到表型输出,通常用于查找特定实验条件必不可少的基因。在这些测定中,使用了一个合并的慢病毒单导向(SG)RNA库,其中每个SGRNA都通过唯一的条形码识别。典型的屏幕涉及端点读取,其中NGS鉴定出不同实验条件的细胞群中SGRNA频率的变化。使用Illumina简短读取序列进行分析,以识别和量化每个独特的SGRNA的条形码。可以使用PACBIO Revio系统上的长阅读测序进行确认(如果需要),请确认靶向集成。这还将确定引入等位基因特异性CAS9裂解的任何遗传变异,例如单核苷酸变异(SNV)。B.整个基因组测序我们使用短或长读测序提供整个基因组测序能力。简短的读取测序提供更高的深度,通常更便宜,并且仍然是分析特征良好的基因组的有效途径。使用PACBIO Revio进行的长阅读测序提供了鉴定复杂的结构变化(大插入/缺失,反转,重复和重复以及易位)的优势,并且最适合于从头开始基因组组装以及将单核苷酸聚糖(SNP)逐渐变化为单位基因组(SNP)。C.来自细胞,组织或器官的大量基因表达分析大量RNA测序(RNA-SEQ)可以使不同条件之间的基因表达分析。可以使用整个转录组,整个外显子组或有针对性的测序选项。用于差异表达分析,使用短阅读技术对转录本(转换为cDNA)进行测序,以识别和量化RNA表达水平。用于映射全长同工型,以识别转录本的剪接变体或替代性开始点和端点或将SNP分配给特定的同工型,因此使用我们的长读PACBIO REVIO测序仪进行分析。D.在RNA或DNA测序之前,单细胞生物学分离单细胞或单核可以使基因表达,染色质结构和拷贝数改变在混合细胞群体内的单细胞水平上进行评估。也可以使用条形码进行谱系跟踪。NBCC中可用的10倍铬平台是核心技术,可以轻松有效地分配单个细胞映射。E.空间分析我们使用纳米弦的GEOMX数字空间分析器耦合到Illumina测序。剖面区域。通过新授予的CFI授予Wrana和Pelletier,我们将从10倍基因组学获得10倍的Xenium和10倍Xenium和visium HD功能。
细菌免疫。Science。337 : 816-821, 2012。6)Gaj T, Gersbach CA, Barbas CF.: 基于ZFN、TALEN 和CRISPR/Cas 的基因组工程方法。Trends. Biotechnol. 31 : 397-405, 2013。7)Doudna JA, Charpentier E.: 基因组编辑。利用CRISPR-Cas9 进行基因组工程的新前沿。Science。346 : 1258096, 2014。8)Strecker J, Ladha A, Gardner Z 等:利用CRISPR 相关转座酶进行RNA 引导的DNA 插入。Science。 365 :48-53,2019。9)Klompe SE,Vo PLH,Halpin-Healy TS 等:转座子编码的 CRISPR-Cas 系统直接介导 RNA 引导的 DNA 整合。Nature。571 :219-225,2019。10)Jacobi AM,Rettig GR,Turk R 等:用于高效基因组编辑的简化 CRISPR 工具及其向哺乳动物细胞和小鼠受精卵中的精简协议。方法。121-122 :16-28,2017。11)Lino CA,Harper JC,Carney JP 等:CRISPR 的递送:挑战和方法综述。药物递送。 12)Kaneko T.:用于产生和维持有价值动物品系的生殖技术。J. Reprod. Dev. 64:209-215,2018。 13)Mizuno N,Mizutani E,Sato H等:通过腺相关病毒载体通过CRISPR/Cas9介导的基因组编辑实现胚胎内基因盒敲入。iScience。9:286-297,2018。 14)Yoon Y,Wang D,Tai PWL等:利用重组腺相关病毒在小鼠胚胎中精简体外和体内基因组编辑。Nat. Commun. 9 : 412, 2018。15)Takahashi G, Gurumurthy CB, Wada K, 等:GONAD:通过输卵管核酸递送系统进行基因组编辑:一种新型的小鼠微注射独立基因组工程方法。Sci. Rep. 5 : 11406, 2015。16)Sato M, Ohtsuka M, Nakamura S.:输卵管内滴注溶液作为在体内操纵植入前哺乳动物胚胎的有效途径。New Insights into Theriogenology, InTechOpen, London, 2018, pp 135-150。 17)Sato M,Takabayashi S,Akasaka E 等:基因组编辑试剂在小鼠生殖细胞、胚胎和胎儿体内靶向递送的最新进展和未来展望。Cells。9:799,2020。18)Alapati D,Zacharias WJ,Hartman HA 等:宫内基因编辑治疗单基因肺疾病。Sci. Transl. Med。11:eaav8375,2019。19)Nakamura S,Ishihara M,Ando N 等:基因组编辑成分经胎盘递送导致中期妊娠小鼠胎儿胚胎心肌细胞突变。IUBMB life。 20)Sato T, Sakuma T, Yokonishi T 等:利用 TALEN 和双切口 CRISPR/Cas9 在小鼠精原干细胞系中进行基因组编辑。Stem Cell Reports。5:75-82,2015。21)Wu Y, Zhou H, Fan X 等:通过 CRISPR-Cas9 介导的基因编辑纠正小鼠精原干细胞中的一种遗传疾病
执行摘要 波浪能有可能为英国提供重要的可再生能源和经济增长来源,并为英国政府的气候变化目标做出贡献 [1]。英国拥有必要的基础设施、市场、技术、法律和法规,通过关键的战略干预,波浪能行业可以取得成功,为英国带来显著利益。为了实现英国 2050 年的净零排放目标,我们需要多样化的可再生能源;波浪能将成为这一结构的重要组成部分,并为平衡电网的能源系统带来宝贵益处。英国可利用的波浪资源每年可提供 40-50 TWh 的电网电力,满足英国目前电力需求的约 15%,到 2050 年装机容量将达到 22GW [2]。波浪能是少数几个由英国主导的技术行业之一,它推动了我们的低碳经济发展,并且具有显著的英国成分(据估计,波浪能产业可以在国内市场确保约 80% 的英国成分 [2])。该资源直接映射到脆弱的沿海社区,对社区认同产生重大影响,带来经济效益,创造高价值就业和经济增长。到 2040 年,波浪能预计将新增 8,100 个就业岗位 [3],行业支持将实现 6:1 的 GVA 效益比 [2]。此外,波浪能是英国丰富的本地能源资源,它与需求完美匹配,并提供供应链基础设施的安全保障。作为早期的领导者,英国波浪能行业从各种原型的开发和部署中积累了丰富的经验、专业知识和知识,并拥有强大的学术和工业界社区。然而,波浪能的发展必须迅速加速,才能在 2050 年前实现其对英国净零排放目标的潜在贡献。波浪能路线图列出了通过有针对性的技术开发和支持机制采取的合理步骤,这些机制旨在鼓励包容性、协作和共享,从而实现 2035 年 90 英镑/兆瓦时的平准化能源成本 (LCoE) 和 2050 年 22 吉瓦的装机容量的里程碑。这种技术推动应辅以市场拉动机制,随着技术的验证和市场开始发展,市场拉动机制会增加,然后随着市场的成熟和自我维持而缩小。实现波浪能技术单位成本的逐步降低是解锁进一步投资和发展的基础。路线图的早期阶段解决了这个问题,重点是波浪能转换器 (WEC) 技术的设计和验证,以证明在降低单位成本的情况下可用性和生存性。这可以通过设计创新和在现有 WEC 或新型 WEC 概念中使用替代组件技术来实现。第一步是进行有针对性的研究,以证明其生存能力和显著的成本降低,然后是展示试点 WEC 农场的可行性。尽管波浪能对净零排放目标的贡献主要集中在公用事业规模,但波浪能的利基市场发展迅速,被视为重要的垫脚石和有效途径,可以展示将波浪能与其他可再生能源一起整合到能源系统中的好处。在这里,利基应用与公用事业规模的 WEC 设计同时进行。随着海上波浪能示范和部署的数量增加,跨学科研究的目标是提高对与海洋生态和环境相互作用的理解,实现影响评估的成本降低,并简化政策、规划和同意。随着部署的增加,利用其他部门技术转让的机会也将增加,从而降低 LCoE 并降低运营管理、维护和安全方面的风险。从 2040 年起,大规模部署波浪能将带来最显著的 LCoE 降低,研究和创新将继续并行,以进一步提高性能并降低成本。波浪能在全球具有巨大的潜力,通过战略投资,波浪能不仅可以成为我们未来可再生能源结构的重要贡献者,还可以成为英国一个利润丰厚的出口市场。