自由基础可卡因和裂纹可卡因是由盐酸可卡因制成的基本形式。freebase的产生需要使用有机溶剂,例如氨或乙醚,以使可卡因从其氯离子中释放出来。在产生裂纹时,在存在水和碳酸氢钠的情况下加热可卡因HCl。该过程产生了白色至淡黄色的晶体,这些晶体被称为可卡因碱,被称为“裂纹”。裂缝通常用特殊的烟雾装置(称为“裂纹管”或“管道”)消耗。名称“裂纹”来自特征性的裂缝或在烟雾过程中产生的嘶嘶声,当小晶体被加热时。自由基碱可卡因和裂纹通常具有更高的纯度。
PKH67绿细胞膜标记试剂盒使用专有的膜标记技术稳定地融入了带有长脂肪型尾巴(PKH67)的绿色荧光染料中,并将其纳入细胞膜的脂质区域。套件(稀释剂C)中提供的标记缓冲液是一种水溶液,旨在保持细胞活力,同时在标记步骤中最大化染料溶解度和染色效率。稀释剂C对哺乳动物细胞是同性渗透性的,不含洗涤剂或有机溶剂,但也缺乏生理盐和缓冲液。根据标记的细胞类型,标记的细胞的出现可能从明亮,均匀到点状或斑点变化。
被视为第四代固体分散体的成员,与传统的溶解度(例如Cremophore RH40和Solutol HS15)相比。从理论上讲,用作固体分散体配方的载体是一种有趣的聚合物。因为它是非离子和亲水性的,因此其溶解度不会像胃肠道系统那样改变。它表面略微活跃,可以在胃肠道中维持较差的可溶性药物过饱和的特性。有机溶液和水溶液都可以溶解溶液。由于其在挥发性有机溶剂中的溶解度,它可以用作喷涂干燥和溶剂蒸发的良好候选者来产生分散体。与另一个API一起创建稳定的解决方案,并且是一个很好的玻璃形成。
瑞士伊韦尔东莱班,2023 年 10 月 19 日——随着人们对 PFAS(一种广泛用于生产锂离子电池的化学品)影响的担忧日益加剧,欧洲正在制定限制其使用的计划。由于电池行业的许多供应商将受到该计划的严重影响,Leclanché 已为这些新限制做好了准备,该公司已在其电池生产中使用水基粘合剂工艺超过 13 年(图片可在此处查看)。PFAS 代表全氟和多氟烷基物质,由多种人造化学品组合而成,自 1950 年代以来,这些化学品已被广泛用于各种工业和消费产品中。然而,自 21 世纪初以来,由于 PFAS 在环境中的长期存在以及对人类健康的潜在不利影响,人们对 PFAS 的担忧日益增加。接触 PFAS 与一系列健康问题有关,包括癌症、免疫系统功能障碍、生殖健康和发育障碍。因此,正在进行重大转变以消除它们的使用。不含 PFAS 或有毒溶剂的水基制造工艺 13 年来,Leclanché 一直是全球锂离子电池电极低成本绿色制造方法的先驱,在混合和涂覆工艺中使用不同的水基粘合剂溶液。水基粘合剂工艺技术有助于消除 PFAS 粘合剂的使用,避免对剧毒有机溶剂的依赖。该技术使公司不再使用 NMP 等有机溶剂,而是完全用水代替。这种选择不仅消除了环境风险,而且还通过大幅降低健康危害确保了参与生产过程的员工的安全。此外,该方法不需要溶剂回收系统,排放仅限于无需进一步处理即可排放到大气中的蒸汽。
锂离子电池 (LIB) 是现代技术不可或缺的一部分,但它们对易燃液体电解质的依赖带来了巨大的安全挑战,尤其是在电动汽车和大型储能系统中。本文介绍了利用定义-测量-分析-设计-优化-验证 (DMADOV) 方法开发阻燃电解质以提高 LIB 的安全性和性能。研究首先定义有机溶剂的性质与电化学稳定性之间的相关性,重点关注可能引起热失控的过度充电风险。通过对候选成分进行系统测量和分析,确定了影响阻燃电解质质量的关键因素。设计阶段优先建立 γ -丁内酯 (γ -BL) 的固体电解质界面 (SEI) 条件,以确保电解质在 LIB 中的性能和稳定性。优化阶段进一步优化了 SEI 形成条件,以解决初始设计期间发现的性能挑战,并结合相关制造工艺。最终验证阶段确认了阻燃电解质组成与优化的 SEI 条件的一致性,为实际应用建立了可行的电解质范围。研究表明,使用 γ -BL 显著降低了因过度充电引起的爆炸风险。最终验证阶段确认了阻燃电解质组成与优化的 SEI 条件的一致性,为实际应用建立了可行的电解质范围。值得注意的是,这项研究强调了稳健的 SEI 设计在开发具有高闪点有机溶剂(如 γ -BL)的阻燃电解质中的重要性,并通过专利技术的验证实验提供支持。这些进步不仅提高了 LIB 的安全性,而且还展示了提高电池性能的潜力,为能源存储解决方案的更广泛应用铺平了道路。
Microplotter®技术的核心是一种使用受控的超声处理以非接触方式沉积流体的分配器。这项获得专利的技术可以生产出在宽至20 µm宽的表面上形成特征的Picoliter液滴。与自动表面高度校准结合使用时,可以实现沉积特征直径的可变性系数,达到10%。可以使用多种流体,包括水溶液和许多基于有机溶剂的混合物。其他分配器遇到的流体,例如石墨烯或碳纳米管悬浮液,或粘度高达450 cp的液体,可以轻松沉积。超声抽水作用也是一种有效的清洁机制,用于依次快速沉积许多解决方案。
关键词:苯噻嗪,抗氧化剂,1,4-二恶烷,自由基氧化,2-丙醇引入苯噻嗪衍生物代表了在化学和医学各个领域广泛使用的重要且有希望的化合物。这些化合物用作有机溶剂中单体氧化和聚合的抑制剂,用于稳定各类的聚合物,甚至在光敏剂[1-3]中。势噻嗪衍生物取决于化合物的化学结构,具有广泛的生物学和药理活性,这决定了它们在医学中的广泛应用[4-8]。基于苯噻嗪衍生物的药物是相似的化学结构的化合物,仅在不同的活性 *相应作者的取代基的性质上有所不同。电子邮件:gulnaz-sharipova@list.ru
锂离子电池(LIB)的独特特征,例如它们的长寿命和高能量密度特征,已促进了它们的全球知名度,并巩固了其作为从便携式电子设备到电动汽车的各种应用的最重要电源的地位。1 - 3液体仍然是消费电子产品和电动汽车中最广泛的电源,甚至是20 - 25年。4,5每年对LIB的需求已达到700 GWH,预计到2030年将攀升至空前的4.7 TWH。6 libs通常包含基于李的阴极(LiCoo 2,Limn 2 O 4,Lini X Mn Y Co Z O 2,Lini X Co Y Al Z O 2,LifePo 4),阳极(石墨),电解质(有机溶剂中的LIPF 6)和分离剂(聚丙烯或多乙烯)。7基于Li的阴极是Libs的关键组成部分;
与普遍使用的热驱动蒸馏工艺相比,膜基分离技术具有能耗低、操作简便、占地面积小等竞争优势。[1–3] 此类技术在水修复、气体净化、有机溶剂纳滤、催化剂回收、化学精炼等多种分离场景中具有广阔的应用前景。[4] 在制造基于陶瓷、[5–6] 聚合物 [7] 和混合基质等不同类型的膜方面已经取得了重大进展。[8–9] 与聚合物膜相比,传统无机膜(如沸石)表现出良好的热/化学稳定性,可以适应更恶劣的操作条件,具有无与伦比的分离性能。[5–7] 其缺点是由于其无机性质,其加工性能和孔径和微结构环境的可定制性有限,这可能会阻碍其