海洋颗粒是地球上主要元素骑自行车的关键,并在海洋中的养分平衡中起着重要作用。海洋颗粒的三个主要类别通过塑造碳分布来连接开放海洋的不同部分:(i)下沉; (ii)暂停,(iii)上升。由浮游植物在地表水中捕获的大气碳,部分通过将颗粒沉入海洋底部,并在控制全球气候中起着重要作用。悬浮的颗粒代表了异养微生物的有机碳的重要来源,与下沉的颗粒相比,更有可能发生回忆性。上升的颗粒,取决于其组成,原点和上升速度,可能会导致海洋上层的碳回忆性,靠近大气。海洋颗粒是微生物活性的热点,因此被微生物重现,其动力学在有机物降解,聚集和下沉中起着重要作用,从而直接影响了生物碳泵的效率。海洋颗粒的微生物组因粒径,来源和年龄而不同。尽管如此,这些因素通常被忽略,并且粒子大多在不考虑各个颗粒之间的高异质性的情况下被视为“散装”。这阻碍了我们对海洋中的碳预算的理解,从而对气候变化的未来预测进行了预测。此外,我们介绍了一个新颖的概念:“脂质碳分流”。在这篇综述中,我们检查已知的粒子类型和相关的抽样方法,并确定知识差距,并强调需要更好地了解单粒子生态系统以提高全球升级率。
Rombola A.G.,Torri C.,Vassura I.,Venturini E.,Reggiani R.,Fabbri D.(2022)。生物炭修订对两年野外实验中农业土壤的有机物和溶解有机物组成的影响。总环境科学,812,1-11 [10.1016/j.scitotenv.2021.151422]。
1,2印度尼西亚尼亚斯大学电子邮件:yuwanmarthynziliwu@gmail.com *摘要,有机物降解的过程是生态系统周期的组成部分,该过程通过微生物的活性将复杂的有机化合物转换为更简单的形式。微生物,例如细菌,真菌和放线菌,在有机物的分解中起着重要作用,无论是家庭废物,农作物残留物还是有机工业废物。此过程涉及各种生化机制,例如水解,发酵和氧化,这些机制是由微生物产生的外细胞酶触发的。环境因素(例如pH,温度,湿度和氧含量)会影响微生物降解的效率。几种微生物,尤其是那些具有分解木质素,纤维素和半纤维素的能力的微生物,已广泛应用于有机废物管理技术,例如堆肥,生物修复和生产。对微生物在有机物降解中的作用的研究不仅对了解生态系统动态,而且还具有支持管理更环保和可持续性的有机废物的潜力。本摘要对影响有机物降解的作用,机制和因素及其在环境技术中的应用进行了回顾。关键字:微生物,有机物降解,细菌,真菌,环境因素,堆肥,生物修复。Faktor Lingkungan,Seperti PH,Suhu,Kelembaban,Dan Kandungan Oksigen,Mempengengaruhi Efisiensi Degradasi Oleh Mikroymanisme。摘要,有机物降解的过程是生态系统周期不可或缺的一部分,它通过微生物的活性将复杂的有机化合物转化为更简单的形式。微生物(例如细菌,真菌和放线菌)在有机物的分解中起着重要作用,包括家庭废物,植物残留物和有机行业废物。此过程涉及各种生化机制,例如水解,发酵和氧化,这是由微生物产生的外细胞酶触发的。一些微生物,尤其是那些具有分解木质素,纤维素和半纤维素的能力的微生物,已广泛应用于有机废物管理技术,例如堆肥,生物修复和沼气生产。对微生物在有机物降解中的作用的研究不仅对于了解生态系统的动态不仅重要,而且还具有支持努力来管理更环保和可持续的有机废物的努力。此摘要提供了影响微生物降解的作用,机制和因素,以及它们在环境技术中的应用。关键词:微生物,有机物的降解,细菌,真菌,环境因素,堆肥,生物修复。
简介:冰卫月可能会促进碳质软管和彗星材料的组合[1]。冰冷月亮上的碳质有机物(COM)的起源可能是原始的,它是从原始磁盘的有机库存中获得的[2],或者可能由Fischer-Tropsch-type合成的原位形成[3]。A pre-accretional origin of the organic matter found in carbonaceous chondrites (CC's) from the evolution of molecular cloud ices, followed by aqueous alteration on the parent body could explain the soluble organic matter found in CC's today [4] Organic species have been directly observed on icy satellites such as aliphatic signatures on Ceres [5], and carbonaceous organic matter (COM) has also been successfully以低密度成分的形式建模,以适应大冰卫星和泰坦的质量和惯性矩[6]。在父材料积聚后,在全球早期海洋中,硅酸盐和有机物之间的分化和相互作用导致这些体内各个层的分配。有机物可以在冰冷的月球形成期间通过变质[6]转化,其中有机前体经历了进行性石墨化。被困在岩石岩心中的COM的热解会释放挥发物和碳氢化合物,然后如冥王星所建议的那样将其捕获在气体水合物层中[7]。目前可以形成富含COM的外部岩心的热解释放的有机物[1],供应Enceladus的羽毛,并可能在全球海洋中产生有机富层[2]。创建了一个地球化学模型,以预测有机物种的形成和浓度。这项研究的目的是了解在软骨(硅酸盐富含硅酸盐)和彗星(碳富含碳)材料的水热改变过程中产生的有机物质,如果将这些有机物提取到地下海洋顶部的稀薄的不混溶层。
抽象的红树林生态系统对沿海稳定性做出了重大贡献,提供了诸如碳质量和风暴保护之类的基本服务。印度尼西亚红树林的康复对于恢复因沿海发展而破坏的生态功能至关重要。本研究旨在比较有机物的比率 - 碳(C),氮(N)和磷(P) - 在巴厘岛贝诺阿湾的自然和修复的红树林土壤中。这项研究是在天然和修复的红树林中的八个地块上进行的,土壤样品使用钻的深度为0至100 cm。使用点火损失(LOI)的土壤有机碳(SOC),总氮(TKN)的FIA方法以及总磷(TP)的比色硫酸盐消化法(TP)进行了有机物分析。结果表明,与天然红树林相比,康复的人树林的总有机碳(1.1±0.5%)较低(1.1±0.5%)和较高的总氮含量(0.07±0.02%)。总磷含量也较低(0.010±0.003%),这可能是由于粘土含量的增加,与土壤中磷结合的粘土含量增加。几个参数与有机物密切相关,包括散装密度,土壤类型,氧化还原电位(ORP),pH和溶解的氧气(DO)(DO),以及红树林的结构,例如树木和幼苗和幼苗密度,茎的,茎的,盖层,盖层,盖层和树枝状况。有机物含量和C:N比率的变化表明,修复的红树林生态系统尚未达到自然生态系统的稳定性。这反映在改变的生物地球化学周期和养分可用性中。因此,需要进行持续的努力,以确保红树林康复过程更全面地恢复。这些发现强调需要在红树林康复中进行有针对性的干预措施,以恢复营养平衡,优化碳储存并增强热带沿海生态系统气候变化的弹性。
•水和空气颗粒松散地包装,形成一个充满孔隙空间的土壤结构,这些孔含有土壤溶液(水)和气体(空气)。土壤中的水和空气随土壤质地,天气和植物吸收而差异很大,但在大多数土壤类型中,它们的百分比约为土壤总量的50%。土壤孔隙空间不变取决于土壤质地和结构,但是在雨后,土壤孔隙空间与空气有关,一旦土壤水:来自雨,雪,露水或灌溉。土壤水充当溶剂和植物生长的养分载体。居住在土壤中的微生物也需要水才能进行代谢活性。土壤水因此,通过对土壤和微生物的影响间接影响植物的生长。土壤的百分比 - 水总量约为25%。土壤水量受许多因素影响;
摘要。了解土壤中植物来源的碳(C)和氮(N)转化和稳定的机制对于预测土壤气候变化的土壤能力并支持其他土壤功能是基础。植物残基和颗粒有机含量(POM)的分解有助于在土壤中形成与矿物相关(平均更稳定)有机物(MAOM)的形成。mAOM是由溶解有机物(离体途径)或微生物坏死和生物产物(体内途径)与矿物质和金属胶体的结合形成的。这两种土壤有机物(SOM)稳定途径中的哪一个更为重要,在哪些条件下是一个开放的问题。为了解决这个问题,我们提出了一个新型的诊断模型,以描述MAOM中的C和N动力学,这是残基和POM分解动力学的函数。专注于土壤阶层之间的关系(即在相空间中进行建模),而不是时间传播可以隔离稳定的基本过程。使用此诊断模型与36项研究的数据库结合使用,其中残基C和N被跟踪到POM和MAOM中,我们发现MAOM预先由Microbes De-Necromass促进,由Microbes De-Necromass推动,由Microbes de-Relembobes de-Ros-Ros-Ros-Coles coless colembles和POM。在黏土土壤中,该体内途径的相关性较高,但在富含C的土壤中和N量添加的残基中较低。总的来说,我们在相空间中的新型建模被证明是对土壤C动力学的机械研究的合理诊断工具,并支持了当前对Micro-
大量的漂浮塑料碎片在海面积聚,在那里它们经受了物理化学和生物风化的影响。Solar UV light plays a pivotal role in degrading the polymer structure, inducing leaching and dissolution of pho- todegradation daughter products.尚不清楚这种塑料衍生的有机物(PDOR)的进一步命运,尤其是其在海洋中的寿命及其对海洋微生物的影响。在这里,我们使用了来自13C标记的塑料(聚乙烯(PE),聚丙烯(PP),聚苯乙烯(PS)和聚乙二醇二苯二甲酸酯(PET))的PDOL,我们与海水从对比的海水中孵育,与海水相反:海洋环境:Wadden Sea,Northe Sea,Northe Sea和Open Atlantic Ocean。微生物介导的p矿化是通过将13C标签从PDON追踪到末端氧化产物CO2并溶解无机碳(DIC)来确定的。虽然在测试的塑料和位置降解动力学不同,但我们发现沿海和开阔的海洋中的pdom降解潜力很大,无论是在海面还是在深海中。但是,基于16S扩增子测序的微生物群落分析表明,PDOM可以实质上改变海洋微生物组,这可能会对其他微生物介导的过程产生后果。
摘要。盐沼泽是潮汐环境的至关重要的生态地球形态特征,因为它们提供了重要的生态功能并提供广泛的生态系统服务。由流体动力学,地质学和植被之间的相互作用控制,有机物(OM)和无机沉积物的贡献都驱动盐沼泽垂直增生。这使沼泽可以保持相对海平面的升高,并同样捕获和存储碳,使其成为气候缓解策略的宝贵盟友。因此,土壤有机物(SOM),即土壤的有机成分在盐沼泽环境中起着关键作用,直接有助于土壤形成和支撑碳储存。这项研究旨在检查在面部盐沼土中OM的空间模式(前20厘米),从而进一步见解了驱动OM动力学的物理和生物学因素,这些动力学影响了影响盐沼的生存和碳汇的潜力。我们的结果揭示了沼泽环境中SOM含量的两种变化量表。在沼泽量表上,OM的可变性受到表面高程与与沼泽边缘距离相关的沉积物供应变化之间的相互作用的影响。在系统尺度上,OM内容分布由海洋和浮动影响产生的梯度主导。通过无机输入,保留条件和沉积物晶粒尺寸的组合来解释SOM中观察到的变化。我们的结果很高 - 浮动沼泽作为碳汇的环境的重要性,进一步强调,潮汐系统内的环境条件可能会产生强大的变化和特定地点