葡萄枝是一种富含碳水化合物的农业废弃物,可被视为一种有前途的能源替代品。这项研究的目的是提出一种利用这种残留生物质的工艺策略,包括将可溶性糖化学转化为糠醛,将纤维素葡萄糖生物转化为 H 2 。对葡萄枝进行蒸汽爆破预处理,其操作条件优化为 190 ◦ C 和 1.6% H 2 SO 4 浸渍生物质。这些预处理条件允许在预水解物中回收 68.2% 的半纤维素糖和 18.2% 的葡萄糖,并通过酶水解回收 45.3% 的葡萄糖。因此,在优化条件下获得的预处理固体进行酶水解,生成的浆液被丁酸梭菌用作底物,发酵成生物氢(830.7 mL/L,每100 g生葡萄枝产量为3550 mL)和有机酸(1495.3 mg乙酸/L和1726.8 mg丁酸/L)。以糠醛生产为基础,在202 ◦ C的微波反应器中优化预水解物中木糖的化学转化,使用0.195 M FeCl 3作为催化剂,糠醛产量为15 g/L,产率为73%。
摘要 - 鸡肉是最常见的养殖物种,每年生产超过900亿吨鸡肉。每天为许多产生食物的动物提供抗生素,以更快地生长并预防世界许多地方的疾病。当将抗生素用于生长促进目的时,与治疗用途相比,通常会施用少量。因此,这可能导致细菌发展抗生素抗性(世界卫生组织,2017年)。有几种与无抗生素的鸟类生产有关的挑战。抗生素的几种替代方法,包括益生菌,益生元,竞争排除,酶和有机酸,在替代抗生素方面有希望。使用益生元的使用有助于通过有害病原体来防止消化系统的定殖,这是通过通过肠道含量改变而创造不利的环境来实现的。益生菌是严格选择的微生物的活菌株对健康具有有益的影响。在家禽饮食中掺入酶具有多种优势,包括降低的消化粘度,改善的消化率和营养吸收,增加饲料摄入量以及增强体重的增长。最大程度地提高性能和维持家禽生产率将依赖于采用均衡的不同替代方案以及有效的管理实践的组合。这种方法对于实现减少抗生素使用的最终目标仍然至关重要。
结果:在碱性样品中,在 Prony 热液条件下(pH 10,30–75 °C)运行 6 天的 15 个反应器中均未观察到电流增加。相比之下,在 Panarea 热液条件下(pH 4.5–7,75 °C)运行的反应器中平均观察到 6 倍的增加。多因素分析显示,这些反应器的整体生物电化学性能使它们有别于所有其他 Panarea 和 Prony 条件,这不仅是因为它们具有更高的电流产量,还因为它们具有古细菌丰度(通过 qPCR 测量)。大多数反应器产生有机酸(6 天内高达 2.9 mM)。尽管如此,库仑效率表明这可能是由于培养基中微量酵母提取物的(电)发酵而不是 CO 2 固定。最后,通过 16S 宏条形码和排序方法描述了微生物群落,并确定了潜在的电营养类群。在帕纳雷亚反应堆中,较高的生长与一些细菌属有关,主要是芽孢杆菌和假交替单胞菌,其中前者在较高温度下(55°C 和 75°C)生长。在重现普罗尼湾热液条件的反应堆中,已知的兼性甲基营养菌,如鞘氨醇单胞菌和甲基杆菌占主导地位,似乎消耗甲酸盐(作为碳源),但不消耗来自阴极的电子。
背景和目的:谷胱甘肽合成酶缺乏症 (GSSD) 是一种常染色体隐性遗传病,文献中描述了约 80 名患者。目前,人们对 GSSD 的基因型-表型相关性知之甚少,尽管可以通过突变分析在一定程度上预测其严重程度。在这里,我们描述了四名患有 GSSD 的患者,并评估了他们的基因型和表型。此外,我们还提供了最新的文献综述。方法:我们回顾性地审查了巴勒斯坦耶路撒冷 Al-Makassed 医院过去十年中所有患有 GSSD 患者的病历。我们回顾了医疗管理的文献和最新的治疗研究,并讨论了表型-基因型相关性。结果:我们描述了四名确诊为 GSSD 的患者。临床表现的严重程度各不相同,但患者通常表现为溶血性贫血和乳酸性酸中毒。尿液有机酸分析显示大量乳酸和焦谷氨酸排泄。所有患者均接受了 N-乙酰半胱氨酸、维生素 E、维生素 C 和碳酸氢钠治疗。除一名患者在两个月大时死亡外,所有患者在治疗后均有显著改善。结论:GSSD 的表现与许多其他疾病相似,有时会导致诊断延迟。早期开始治疗可以改善临床结果和整体发展。如果高度怀疑患有 GSSD,则重要的是考虑进行 mRNA 测序,以防止在存在剪接位点突变时延误诊断。
Honeybees用蜂面包而不是蜂蜜和花粉来营养。因为花蜜和花粉在被蜜蜂食用之前都经历了一些生化变化。虽然蜜蜂带入蜂巢的花粉被填充到蜂窝细胞中,但蜜蜂分泌物中的蜂蜜,有机酸和消化酶被添加到花粉中(Deveza等人。2015)。然后,由细菌引起的乳酸发酵发生在厌氧条件下。发酵的一个重要原因是花粉的外层(外部)溶解以及花粉内部营养素的易于吸收。因此,发酵过程不仅用于保留花粉含量,还可以形成新的化合物。在发酵过程中,蜜蜂花粉蛋白被分解为肽和氨基酸。degrandi -Hoffman(2013)报告说,花粉的蛋白质浓度高于蜂面包,而氨基酸浓度较低。在另一项研究中,发现蜜蜂面包中的乳酸浓度比花粉高6倍(Nagai等人。2005)。 还报道说,蜜蜂面包中含有维生素K,在新鲜花粉中未发现,在B族维生素中更丰富(Gilliam 1979a,b)。2005)。还报道说,蜜蜂面包中含有维生素K,在新鲜花粉中未发现,在B族维生素中更丰富(Gilliam 1979a,b)。
摘要:越来越多地认识到由合成的农业化学物质(例如化肥,农药和除草剂)引起的问题,这使得发现可以保证可以保证竞争植物生产并保护环境的同时保持农业生态系统的自然平衡的替代方法至关重要。领先的替代方法之一是利用促进植物生长根瘤菌(PGPR)的根瘤菌菌株。基于PGPR的生物量化剂在农业生产的可持续性方面的利用在世界范围内引起了极大的关注,因为它们不仅有助于改善植物的生长,而且还诱发了生物性和非生物胁迫耐受性。本评论更新了可持续农业生态系统中上述环保战略,并为乳酸细菌(LAB)(一种新兴的PGPR分类群)提供了新的见解。在这方面,提出了实验室合成代谢物的能力,包括有机酸,酚酸及其类黄酮衍生物,phy-肌措施和抗菌底物。实验室的使用提供了PGPR和环保作物生产力之间的桥梁,这可以通过减少农业化学物质,提高土壤质量并最大程度地减少环境污染来导致可持续生产系统。实验室的所有有益方面都需要通过未来的研究来解决,以计划使用和/或将PGPR的使用以及其他有机或无机投入组合在可持续生产系统中的方法。
微生物生产颜料及其在食品和化妆品行业中的应用Pooja Mistry 1,Trupti Pandya 2 Bhagwan Mahavir基础和应用科学学院摘要:某些合成染料的负面影响正在推动对自然色的需求。细菌和真菌色素提供了一种自然产生的颜色的方便替代供应。它们比其他天然颜料具有许多优势,例如快速开发,简单处理和对天气的免疫力。该研究的主要目标是分离产生土壤的色素细菌。使用多种纯培养技术维持孤立的菌落。颜料可以放大许多应用中使用的颜色的现有调色板。最大颜料产量的各种参数是环境和健康问题,相比之下,微生物颜料是环保的,并在纺织工业中使用,微生物来源的色素是一个很好的选择,可以很容易地以高收率产生。被称为颜料的化学物质负责吸收可见光。称为颜料的化合物经常在业务中使用。由于它们的无毒构成,某些微生物制造颜色用于药品,化妆品,食品,染料和其他工业用途,因此对环境有益。天然食品着色剂是由微生物商业生产的。发酵提供了几种好处,包括更便宜的生产和简单的提取;改善的菌株可产生与季节无关的大量基本材料供应。(Rymbai等,2011)。关键字:微生物色素,土壤样品,细菌,纺织品和染料1。简介合成色优于稳定性,易于应用和成本效益的天然色素。近年来,天然色素是从食品,染料,化妆品和药品制造实践中分离出来的(Sanjay等,2007)。自然色素的主要来源是从动物,植物(Joshi等,2003)和微生物(Nagpal等,2011)获得的。微生物是可生物降解,可再生,环保的,并以其在纺织品染色,食物成分,化妆品和药物方面的用途而闻名(Shahid等,2013)。微生物的发展可以通过强大的状态来培养,并降低了原油或现代自然废物的特征。微生物可以在适度的培养基中有效发展,并快速速度,它们的发展是气候条件的自主。微生物产生多种色素包括聚酮化合物,类胡萝卜素,苯乙烯,酰基苯酚,吡咯和蒽醌,但这些颜料大多数除了类胡萝卜素和聚酮化合物(Stich等人,2002年)都对人有毒。食物材料的新鲜度是由其安全性和颜色表示的,也表现出良好的感官和美学价值。细菌色素因其对人类和环境的无害影响而使用(Ahmad等,2012)。在食品行业中纯化的微生物色素用作食品添加剂,具有抗氧化剂,颜色增强剂等特性。微生物是有机酸,酶,维生素,氨基酸和有机酸的良好来源。从微生物来源中提取色素,然后将其用作食用色素是合成染料的绝佳替代品(Malik等人,等等,2012年)。在易于使用的廉价培养基中,细菌物种创造的主要好处是快速,易于生长,完全没有大气条件。
生物腐蚀,也称为微生物学影响的腐蚀(MIC)是通过微生物引起的金属结构的降解,可以通过直接在金属表面上释放一组电化学反应来释放一组电化学反应,从而释放一组电化学反应。各种微生物能够引起这种类型的腐蚀,包括细菌,古细菌和真菌[1]。这些微生物通过这些微生物形成生物膜会增强微生物细胞对金属表面的粘附,并增加在该环境中不良条件下生存的机会。生物膜由不同种类的微生物形成,它们含有水,细胞外聚合物(EPS)和某些无机化合物[2]。MIC的过程受到Agarry等人在金属和环境之间的界面上某些物理化学参数的改变[3]。[2]。生物膜的产生对于通过增加疏水性和电荷来影响界面至关重要[4]。研究表明,管道或其他金属容器中的水增加了这些微生物的存在的机会[5,6]。这些微生物在石油行业的金属表面上的生长会导致石油产品的生物污染[7]。负责引起生物腐蚀的细菌的常见类型包括产生酸性细菌(APB),硫酸盐还原细菌(SRB),硫氧化细菌,铁细菌(氧化剂和还原剂)以及锰氧化细菌。但是,产生酸的细菌和其他包括细菌分泌有机酸,甲烷作和生物膜生产者[7,8]。
引言当前,科学界将大量注意力集中在由可再生资源获得的材料上,特别是由天然聚合物及其衍生物获得的材料,例如壳聚糖、胶原蛋白和海藻酸盐。这对于生物医学中使用的材料尤其如此,因为需要保持生物相容性和抗菌性,例如组织工程的多孔支架或封装活性物质的基质 [1, 2]。因此,一个有前景的领域是研制用于透皮给药 ( TDL ) 的贴剂,当材料贴在患者皮肤上时,能够扩散到血液中 [3]。脱乙酰基几丁质衍生物壳聚糖是一种多糖,广泛用于制造生物医学材料,包括 TDL 材料,其形式为多孔海绵、微粒、水凝胶和薄膜 [4]。由壳聚糖制成的聚合物多孔海绵是一种特别方便的皮肤接触材料。矿物无机酸和一些有机酸被用作溶剂,用于将该聚合物加工成新形式的生物材料。生产多孔壳聚糖海绵的“经典配方”包括将壳聚糖(1-2 wt%)溶解在稀乙酸溶液(1-2 vol%)中,冷冻和冷冻干燥 [5]。尽管此类材料中的酸含量较低,但接触时皮肤可能会产生过敏反应。因此,开发加工这种聚合物的新方法并寻找新的溶解介质变得极为重要。
• 在标准条件下和基准化学品进行测试时,表现出卓越的甜味腐蚀抑制性能,在非优化配方中以 10 ppm 剂量显示 99.8% 的保护率 • 在 RCE(30 Pa 壁面剪切应力)测试和高流量条件下(在 +60°C 的 3% 氯化钠 (NaCl) 盐水中获得的数据),以 10 ppm 剂量显示腐蚀减少 >99%,表明性能稳定 • 与重盐水兼容,例如 26% NaCl、20% NaCl 在 +70°C,>30% 氯化钙和 50 000 ppm Ca/25 000 ppm 钠盐水在 +80°C • 在高温下对有机酸的抑制性能良好,例如在 +95°C 下 24 小时后在 10% 柠檬酸中对碳钢的保护率 >95% • 低级生态毒性,使其适合在最严格的监管环境中使用 • 水毒性比常见的油田 CI 碱(如苯扎氯铵和咪唑啉)低 10-100 倍,无环境危险标签 • 测试表明 Armohib ® CI-5150 腐蚀抑制剂不会刺激皮肤、致敏或致突变 • 在室温下呈透明液体状,易于处理 • 内部配方研究表明,活性材料在配制时非常灵活,可以开发水基和溶剂基腐蚀抑制剂溶液,包括那些采用环境可接受溶剂的溶液