参考文献 [1] M. Benedetti、E. Lloyd、S. Sack 和 M. Fiorentini,“参数化量子电路作为机器学习模型”,载于《量子科学与技术》4,043001 (2019)。 [2] S. Jerbi、LJ Fiderer、HP Nautrup、JM Kübler、HJ Briegel 和 V. Dunjko,“超越核方法的量子机器学习”,arXiv 预印本 arXiv:2110.13162 (2021)。 [3] V. Havlicek、AD Corcoles、K. Temme、AW Harrow、A. Kandala、JM Chow 和 JM Gambetta,“使用量子增强特征空间的监督学习”,载于《自然》567,209 (2019)。 [4] M. Schuld 和 N. Killoran,“特征希尔伯特空间中的量子机器学习”,载于《物理评论快报》122,040504 (2019)。[5] M. Schuld,“监督量子机器学习模型是核方法”,arXiv:2101.11020 (2021)。 [6] JE Johnson、V Laparra、A Perez-Suay、MD Mahecha 和 G Camps-Valls G,“核方法及其衍生物:地球系统科学的概念和观点”,载于 PLoS ONE 15(10 (2020)。[7] Benyamin Ghojogh、Ali Ghodsi、Fakhri Karray 和 Mark Crowley,“重现核希尔伯特空间、Mercer 定理、特征函数、Nystrom 方法和机器学习中核的使用:教程和调查”,arXiv 预印本 arXiv:2106.08443 (2021)。[8] Y. Liu、S. Arunachalam 和 K. Temme,“监督机器学习中严格而稳健的量子加速”,载于 Nature Physics 17, 1013 (2021)。[9] JR Glick、TP Gujarati、AD Corcoles、Y. Kim、A. Kandala、JM Gambetta 和 K. Temme,“具有群结构数据的协变量子核”,arXiv 预印本 arXiv:2105.03406 (2021)。[10] Francesco Di Marcantonio、Massimiliano Incudini、Davide Tezza 和 Michele Grossi,“QuASK——具有核的量子优势寻求者”,arXiv 预印本 arXiv:2206.15284 (2022)。[11] Supanut Thanasilp、Samson Wang、M Cerezo 和 Zoe Holmes。“量子核方法中的指数集中和不可训练性”,arXiv 预印本 arXiv:2208.11060 (2022)。 [12] Sergey Bravyi、Oliver Dial、Jay M. Gambetta、Dario Gil 和 Zaira Nazario,“超导量子比特的量子计算的未来”,arXiv 预印本 arXiv:2209.06841 (2022 年)。