简单的摘要:线粒体是动物细胞中发现的细胞器。线粒体使用有氧呼吸产生三磷酸腺苷。线粒体功能障碍是2型糖尿病的突出病理特征。imeglimin是一种新型的口服降血糖剂,具有独特的作用机理,靶向线粒体生物能学。imeglimin减少了对人体有害的活性氧的产生。此外,它改善了线粒体和内质网的功能,这些功能在蛋白质的合成,折叠,修饰和转运中很重要。imeglimin通过线粒体的维持功能和结构和β细胞中的内质网的维持功能和结构来增强葡萄糖刺激的胰岛素分泌,并抑制胰腺中β-细胞的凋亡。此外,Imeglimin抑制肝葡萄糖的产生并改善胰岛素敏感性。这些机制改善了2型糖尿病患者的葡萄糖代谢。对Imeglimin的临床试验在2型糖尿病患者中表现出良好的低血糖效率和安全性。有趣的是,Imeglimin改善了2型糖尿病患者的血管功能障碍。在动物中,imeglimin改善了心脏和肾功能,减少缺血引起的脑损伤。除了降低葡萄糖的作用外,imeglimin还可以成为2型糖尿病患者糖尿病并发症的有用治疗选择。
简单摘要:根瘤菌ETLI MIM1(REMIM1)具有活性在自由生活和共生中的VI型蛋白质分泌系统。T6SS是一种纳米芳烃,将称为效应子的蛋白质分泌为真核和原核靶细胞。REMIM1 T6SS基因簇编码有毒效应子(RE78)以及免疫蛋白(RE79),如在大肠杆菌中表达时所证明的。另外,观察到RE78蛋白的毒性作用在细胞质之外,因为仅当将信号肽添加到其中时才发生对大肠杆菌的毒性作用。RE79在Remim1 Periplasm中发现,并且与T6SS的易位无关。此外,RE78/RE79对还参与细菌竞争和结节占用率。更好地理解该分泌系统的作用对于选择高度竞争性根茎的接种剂可能非常有用。
输注血浆可以纠正严重的凝血病,并将出血风险降至最低。在极端情况下,输血的好处是显而易见的,相比之下,任何风险都微不足道,任何并发症都可以作为患者治疗过程的一部分进行管理。然而,大多数情况下不会进行输血。实验室测试值,无论是血红蛋白浓度、血小板计数还是凝血酶原时间/国际标准化比率 (INR),通常是预防性输血的理由。开具处方的医生经常会说“我不想让我的病人心肌梗塞”或“我不想让我的病人在手术过程中流血”。这些目标当然值得称赞,因为心肌坏死的损害或出血的并发症可能是严重的和/或不可逆的。在任何治疗方案中,特别是在考虑预防性干预时,必须权衡治疗的潜在益处与治疗旨在避免的发病概率以及治疗本身产生不良影响的概率。在输血的情况下,潜在的并发症通常以输血反应的形式考虑。其中最常见的——发热和荨麻疹反应——被一些临床医生认为是微不足道且易于处理的,而最可怕的——输血传播感染 (TTI)——如今被认为极为罕见,超出了大多数医生的经验范围。因此,可以几乎不考虑风险地输血。但是,虽然今天的输血肯定比医学史上的任何时候都安全,但这些公认的风险具有有限的、非零的概率,其后果可能是灾难性的。例如,输血相关循环超负荷 (TACO) 和输血相关急性肺损伤 (TRALI) 仍然是美国食品药品监督管理局 (FDA) 报告的输血相关死亡的两个最常见原因。1 过去 15 年,人们对输血的担忧发生了有趣的变化。随着人类免疫缺陷病毒 (HIV)、丙型肝炎病毒 (HCV) 和乙型肝炎病毒 (HBV) 等最显著病原体的传播风险大幅降低,人们的担忧已转向其他风险,包括 TRALI 和血小板的细菌污染。在美国,大多数血液供应商现在提供男性、从未怀孕的女性或已证实缺乏 HLA 抗体的女性的血浆和单采血小板,以减轻 TRALI 的风险。这一策略已将 TRALI 的发病率降低到 1:10,000 输血单位。2 红细胞现在是与 TRALI 相关的最常见产品。随着 TRALI 发病率的下降,目前输血相关死亡的最常见原因是 TACO。血小板和血浆成分与 TACO 发生率约 1% 有关,红细胞与 TACO 发生率约 2.7%。2 TACO 最常发生在年龄极端的患者和患有充血性心力衰竭的患者中。
•对协作作者身份的认可:火车大脑联盟成员是:L。Maffei 1,E。Picano 2,M。G. Andreassi 2,A。Angelucci 1,A。Angelucci 1,F。Baldacci 3,L。Baroncelli 1,Baroncelli 1,T。Begenisic 1,P. F. Bellinvia 2,P.F.Bellinvia 2,N。Berardi 1,L.Berardi 1,L.Bia b。 , E. Bonanni 3, U. Bonuccelli 3, A. Borghini 2, C. Braschi 1, M. Broccardi 1, R. M. Bruno 2, M. Caleo 1, C. Carlesi 1.3, L. Carnicelli 3, G. Cartoni 3, L. Cecchetti 5, M. C. Cenni 1, R. Ceravolo 3, L. Chico 3, S. Cintoli 1.3, G. M. Coscia 1, M. Costa 1,G。D'Angelo 3,P。d'Ascanio 7,M。de nes 2,S。del Turco 2,E。of Coscio 7,M。Galante 7,N。Di Lascio 2,F。Faita 2,I.Falorni 1.3,U。Faraguna7,A.Fenu 2,A.Fenu 2,L。Fortunato 2,L。Fortunato 2,R。Franco 1,R。Franco 1,L. Garani 3,3。 Giorgi 3,R。Iannarella3,C。Iofida5,C。Kusmic2,F。Limongi1,M。Maestri3,M。Maffei2.6,S。Maggi1,M。Mainardi1,L。Mammana1,L。Mammana1,A。Marabotti 3,A。Marabotti 3,Mariotti V. 7,Mariotti V. 7,Mariissari 5,E.Melissari 5,A.Merissari 5,S。Mercuri 2,S。Morrin,Morrin 8.9 M. Noale 1,C。Pagni 3,S。Palumbo 5,R。Pasquariello 4,S。Pellegrini 6,P。Pietrini 5,T。Pizzorusso 1,A。Poli 1,L。Pratali 2,A。Retico 10,A。Retico 10,E。Ricciardi 5,E。Ricciardi 5,G。Rota 5,G。Rota 5,G。Rota 5,A。A. > > > > > > > >销售1,S。Sbrana 2,G。Scabia 6,M。Scali 1,D。Scelfo 4,R。Sicari 2,G。Siciliano 3,F。Stea 2,S。Taddei 6,G。Tognoni 3,G。Tognoni 3,A。Tonacci 3,A。Tonacci 2,A。Tosetti 4,M。Tosetti 4,S。Turchi 2&L。volpi 2&L。volpi 2&L。volpi G. 1.3,Neurosce of neurock of neurosce of neurock of neurock of neurosce of。 1,56100,56100 PISA,意大利。2 CNR的临床生理研究所,通过G. Moruzzi 1,56124 Pisa,意大利。 3意大利比萨和奥皮萨大学临床和实验医学神经科。2 CNR的临床生理研究所,通过G. Moruzzi 1,56124 Pisa,意大利。3意大利比萨和奥皮萨大学临床和实验医学神经科。4 IRCCS Stella Maris,Viale del Tirreno 341,意大利Calambrone。 5手术,医学,分子病理学和PISA大学的重症监护,通过意大利比萨的Savi 10,56126。 6比萨大学临床和实验医学系,通过意大利PISA SAVI 10,56126。 7 PISA大学的转化研究和新技术,通过意大利PISA SAVI 10,56126。 8 Bertarelli基金会转化神经工程基金会主席,神经植物中心和生物工程研究所,Ecole Polytechnique Polytechnique Federale de Lausanne,CH-1015瑞士Lausanne,瑞士。 9 Scuola Superiore Sant'anna,P.Za Martiri della libertà33,56127 Pisa,意大利。 10国家核物理研究所(INFN),PISA部分,Largo B. Pontecorvo,3 56127,意大利比萨。4 IRCCS Stella Maris,Viale del Tirreno 341,意大利Calambrone。5手术,医学,分子病理学和PISA大学的重症监护,通过意大利比萨的Savi 10,56126。6比萨大学临床和实验医学系,通过意大利PISA SAVI 10,56126。 7 PISA大学的转化研究和新技术,通过意大利PISA SAVI 10,56126。 8 Bertarelli基金会转化神经工程基金会主席,神经植物中心和生物工程研究所,Ecole Polytechnique Polytechnique Federale de Lausanne,CH-1015瑞士Lausanne,瑞士。 9 Scuola Superiore Sant'anna,P.Za Martiri della libertà33,56127 Pisa,意大利。 10国家核物理研究所(INFN),PISA部分,Largo B. Pontecorvo,3 56127,意大利比萨。6比萨大学临床和实验医学系,通过意大利PISA SAVI 10,56126。7 PISA大学的转化研究和新技术,通过意大利PISA SAVI 10,56126。8 Bertarelli基金会转化神经工程基金会主席,神经植物中心和生物工程研究所,Ecole Polytechnique Polytechnique Federale de Lausanne,CH-1015瑞士Lausanne,瑞士。9 Scuola Superiore Sant'anna,P.Za Martiri della libertà33,56127 Pisa,意大利。10国家核物理研究所(INFN),PISA部分,Largo B. Pontecorvo,3 56127,意大利比萨。
摘要:影响Holm Oak的根腐是伊比利亚半岛高生态和经济损失的原因,强调了发展疾病控制方法的相关性。这项工作的目的是评估由有益的生物(Trichoderma Complex,T-Complex)组成的生物处理的作用,对在两个对比的Holm Oak Ecotyp中感染的Holm Oak幼苗感染了phytophthora cinnamomi,一种被认为是高度易于耐受的霍尔姆oak oak Ecotyp,一种被认为是耐受性的(hu)和另一种被认为是耐受性的。为此,在温室中进行了完整的多因素测试,并监测幼苗以进行生存分析以及形态和生理属性评估。死亡率始于易感性(HU),而不是在耐受性(GR)生态型中,并且由于植物的生态型,生存率显示出不同的趋势。耐受性生态型显示出高生存率和对利用微生物治疗的更好反应。glm表明,治疗之间差异的主要原因是生态型,其次是T-复合和灌溉,并且发现生态型和肉桂疟原虫之间存在弱相互作用。光合作用(a)与蒸腾(TR)之间的线性关系显示,在DR型条件下,在DR型条件下,感染和接种植物的A/TR速率增加。受益的微生物治疗对耐受性生态型的影响更大。对Q的遗传多样性的理解和水应力对生物处理对根腐病的有效性的影响提供了有用的信息,以开发环保疾病控制方法来解决Holm Oak的下降。
人类大脑已经进化到能够解决在多种环境中遇到的问题。在解决这些挑战时,它会形成关于世界多维信息的心理模拟。这些过程会产生与环境相关的行为。大脑作为过度参数化的建模器官,是产生复杂世界中行为的进化解决方案。生物最基本的特征之一是它们计算从外部和内部环境中接收的信息的价值。通过这种计算,生物可以在每种环境中以最佳方式行事。大多数其他生物几乎只计算生物学价值(例如如何获取食物),而人类作为一种文化生物,则从一个人的活动角度计算意义。计算意义是指人类大脑的过程,借助这个过程,个人试图使自己理解相应的情况,以了解如何以最佳方式行事。本文通过探索计算意义所开辟的不同可能性,并深入了解更广泛的视角,挑战了行为经济学的偏见中心方法。我们专注于确认偏见和框架效应作为认知偏见的行为经济学例子。我们得出结论,从大脑的计算意义的角度来看,这些偏见的使用是人类大脑优化设计的计算系统不可或缺的特性。从这个角度来看,认知偏见在某些情况下可能是合理的。以偏见为中心的方法依赖于仅包含少数解释变量的小规模可解释模型,而计算意义的观点则强调行为模型,这些模型允许多个变量。人们习惯于在多维和多变的环境中工作。人类大脑在这样的环境中处于最佳状态,科学研究应该越来越多地在模拟真实环境的情况下进行。通过使用自然刺激(例如视频和虚拟现实),我们可以为研究目的创建更逼真、更逼真的环境,并使用机器学习算法分析结果数据。通过这种方式,我们可以更好地解释、理解和预测人类在不同情况下的行为和选择。
刺激是一种高度浓缩的微生物表述,这些微生物的有益微生物被选为将不可用的养分转化为可用形式的可用形式,以共同改善土壤和植物。刺激在任何植物物种的土壤,叶子和种子上应用时会产生相似的结果。刺激整个季节的工作,以提高产量潜力。
迅速增加的人口,加上气候变化以及对合成肥料过度依赖的数十年,导致了两个紧迫的全球挑战:粮食不安全和土地退化。因此,至关重要的是,实践可以使土壤和植物健康以及可持续性更加积极地追求至关重要。可持续性和土壤生育能力包括诸如改善贫困和干旱土壤中植物生产力,保持土壤健康的生产力,并最大程度地减少对贫困土壤管理带来的生态系统的有害影响,包括农业化学品和其他污染物的径流。促进细菌(PGPB)的植物生长可以通过多种方式改善粮食生产:通过促进宏观和微量营养素的资源获取(尤其是N和P),调节植物激素水平,拮抗致病因素并维持土壤生育能力。PGPB包括属于多个门的细菌的不同功能和分类群,包括蛋白质细菌,富公司,细菌,细菌和静脉细菌等。本综述总结了这些有益的土壤细菌用来促进植物健康的机制和方法,并询问它们是否可以进一步发展为有效的,潜在的商业植物刺激剂,这些植物刺激剂实质上降低或替换了涉及食品生产和生态系统稳定性的各种有害实践。我们的目标是描述有益植物 - 微生物相互作用涉及的各种机制,以及它们如何帮助我们实现可持续性。
摘要:这项研究评估了杂种sturgeon(Acipenser Gueldenstaedtii brandt×Acipenser baeri Brandt)的生产中的鱼类废水的影响长叶叶。“ Elizium”)。 经过测试的组合是富含三个微生物联盟之一的农场废水,鱼类废水,以及补充矿物质的鱼类废水。 在补充矿物营养素的耕种中,从耕种的废水组合中获得了romaine生菜植物的最佳生长参数。 鱼类农场废水的应用和有益的微生物伴侣积极地影响了生菜叶的新鲜重量和每植物的叶子数量。 然而,用补充矿物质的废水喂养的植物的特征是叶尖燃烧的最强症状和最低的商业价值。 相比之下,仅以鱼类废水或带有微生物的废水为食的植物的特征是高,相似的商业价值。 在施用矿物质剂量增加后,有证据表明,在水培养莴苣培养中参与营养循环的微生物活性更大。 接种液中的微生物结合和矿物质的应用显着增加了细菌的数量和活性。接种后7、14和21天。“ Elizium”)。经过测试的组合是富含三个微生物联盟之一的农场废水,鱼类废水,以及补充矿物质的鱼类废水。在补充矿物营养素的耕种中,从耕种的废水组合中获得了romaine生菜植物的最佳生长参数。鱼类农场废水的应用和有益的微生物伴侣积极地影响了生菜叶的新鲜重量和每植物的叶子数量。然而,用补充矿物质的废水喂养的植物的特征是叶尖燃烧的最强症状和最低的商业价值。相比之下,仅以鱼类废水或带有微生物的废水为食的植物的特征是高,相似的商业价值。在施用矿物质剂量增加后,有证据表明,在水培养莴苣培养中参与营养循环的微生物活性更大。接种液中的微生物结合和矿物质的应用显着增加了细菌的数量和活性。接种后7、14和21天。
日益强大的人工智能系统在广泛用途中的使用也带来了重大风险。这些问题已从技术、法律、经济、医学、社会学、政治和伦理等多个角度展开讨论,并以各种表示更具体问题的名称进行讨论,例如人工智能安全、人工智能伦理、负责任的人工智能、有益的人工智能、以人为本的人工智能、人工智能协调等等。无论考虑哪个领域,人工智能技术的安全和有益使用都至少面临两个重大挑战:决定人工智能系统应如何运行,以及构建它们以符合这些要求。本文提出了一项多学科、跨部门的研究计划,以从根本上解决人工智能安全的技术挑战。