近年来,靶向放射性核素治疗 (TRT) 已成为一种有前途的癌症治疗策略。与传统放射疗法相比,TRT 以有针对性的方式将电离辐射传送到肿瘤,从而减少健康组织所受的照射剂量。现有的 TRT 策略包括使用 177 Lu-DOTATATE、131 I-甲碘苄胍、Bexxar 和 Zevalin,这些药物分别经临床批准用于治疗神经内分泌肿瘤、神经母细胞瘤和非霍奇金淋巴瘤。尽管这些药物已获得有希望的结果,但迄今为止获得的临床证据表明,只有一小部分患者获得完全缓解。因此,人们一直尝试通过与其他治疗药物联合使用来改善 TRT 结果;这些策略包括同时进行 TRT 和化疗,以及将 TRT 与已知或假定的放射增敏剂(如聚(腺苷二磷酸核糖)聚合酶和哺乳动物雷帕霉素靶标抑制剂)一起使用。除了可能比各自的单一疗法获得更好的治疗效果外,这些策略还可以降低所需的剂量或治疗周期数,从而减少不必要的毒性。到目前为止,已经进行了多项临床试验来评估基于 TRT 的联合疗法的益处,尽管有时公共领域可用的临床前证据有限以支持其使用。虽然一些临床试验取得了有希望的结果,但其他试验并未显示特定的联合治疗对生存有益。在这里,我们全面回顾了迄今为止文献中报道的与 TRT 联合的策略,并评估了它们的治疗潜力。
摘要 简介 几乎 25% 的结直肠癌 (CRC) 患者在诊断时同时出现结直肠肝转移 (SCLM)。SCLM 的肝优先治疗包括新辅助化疗、随后的肝切除术,然后是原发性肿瘤切除术。采用这一策略是因为疾病的预后主要取决于转移瘤,而不是原发性肿瘤。本研究旨在评估肝优先治疗在 SCLM 治疗中的可行性和临床预后。材料和方法这项回顾性研究包括 2015 年 7 月至 2020 年 7 月期间的 25 名 SCLM 患者。所有患者均采用“意向治疗”方法进行肝优先治疗。计划随访至少 3 年。数据从医院记录中收集,包括生存率和预后因素的单变量分析,例如性别、年龄和化疗周期数,以评估它们对生存概率的影响。结果 19 名患者完成了治疗方案。长期结果显示中位总生存期 (OS) 为 32 个月。1 年和 3 年生存率分别为 89.5% 和 42.1%。中位无病生存期为 13 个月。转移病灶数量、单叶或双叶疾病以及化疗周期频率显著影响生存期 (p < 0.05)。7 名患者 (36.84%) 无病生存 (无复发),2 名患者 (10.53%) 复发后存活。总死亡率包括 10 例(52.63%)因复发而死亡。结论 肝优先入路治疗同步性结直肠肝转移具有显著的总体优势。但复发率仍然相对较高。
摘要。为循环神经网络 (RNN) 手工制作有效且高效的结构是一个困难、昂贵且耗时的过程。为了应对这一挑战,我们提出了一种基于蚁群优化 (ACO) 的新型神经进化算法,称为基于蚂蚁的神经拓扑搜索 (ANTS),用于直接优化 RNN 拓扑。该过程从多种现代循环细胞类型中进行选择,例如 ∆ -RNN、GRU、LSTM、MGU 和 UGRNN 细胞,以及可能跨越多个层和/或时间步骤的循环连接。为了引入鼓励形成更稀疏的突触连接模式的归纳偏差,我们研究了核心算法的几种变体。我们主要通过制定不同的函数来驱动底层信息素模拟过程(模仿标准机器学习中的 L1 和 L2 正则化)以及引入具有专门角色的蚂蚁代理(受真实蚁群运作方式的启发),即构建初始前馈结构的探索蚁和从前馈连接中选择节点以随后制作循环记忆结构的社会蚁。 我们还结合了社区智慧,其中最佳权重由蚁群共享以进行权重初始化,从而减少本地训练候选 RNN 所需的反向传播时期数,从而加快神经进化过程。 我们的结果表明,ANTS 进化的稀疏 RNN 明显优于由现代记忆细胞组成的传统一层和两层架构以及众所周知的 NEAT 算法。 此外,我们还改进了实验中使用的时间序列数据集的先前最新结果。
详细内容:单元 1 方法研究:工作研究的目的、目标、程序和应用;方法研究的定义和基本程序、工作的选择、各种记录技术,如概要流程图、流程图、人机图、双手流程图、字符串图、流程图、多项活动图、simo、循环图和计时循环图;改进方法的严格审查、开发、安装和维护;动作经济原理及其在工作设计中的应用;微动作研究、备忘录动作研究及其在方法研究中的使用。单元 2 工作测量:工作测量的介绍和定义、目标和基本程序;工作测量在工业中的应用;时间研究:基本程序、所需设备、时间测量方法、工作的选择、将工作分解为元素;要计时的周期数;评级和评级方法、津贴、标准时间的计算。工作抽样:基本程序、工作抽样研究的设计、进行工作抽样研究和建立标准时间。单元 3 工作评估和激励方案:Starlight 线、Tailor、Merrick 和 Gantt 激励计划 标准数据系统;基本和非基本预定运动系统、工作因素系统;方法时间测量 (MTM)、MOST 单元 4 人为因素工程:人为因素工程的定义和发展历史、人机系统的类型和特点、人与机器的相对能力;人为因素数据的开发和使用;信息输入和处理:信息理论简介;影响信息接收和处理的因素;感官输入的编码和选择。单元 5 显示系统和人体测量数据:显示 - 视觉显示的类型、视觉指示器和警告信号;因子和图形显示;听觉和触觉显示的一般原理、特性和选择。
可充电铝电池(RABS)使用刘易斯酸性铝氯化物(ALCL 3)和1-乙基-3-甲基咪唑烷氯化物(EMIMCL)离子液体电解质。电极制造通常依赖于锂离子电池(LIB)的程序,包括使用聚乙烯二氟化物(PVDF)作为粘合剂。但是,PVDF在RAB电解质中与Al 2 Cl 7-反应,使其不适合新电池类型。文献缺乏有关形成的产品的细节,离子液体电解质的变化以及对电化学性能的影响。在2025年对欧洲化学机构对人类和聚氟烷基物质(PFA)的限制(PFAS)限制为替代性粘合剂。与ALCL 3:EMIMCL(1.50:1.00)电解质,PVDF和PVDC分别在脱氢液化和脱氢氯化过程中转化为无定形碳,如Raman光谱所证实的。此外,通过19 F-NMR,可以证明浸泡聚合物和离子液体之间的反应时间对新形成的新形成的铝氯化铝合症复合物具有显着影响。基于石墨的电极的电化学测试表明,与PVDC相比,PVDF的特定能力增加,并连续数量的周期数。无定形碳可以防止石墨瓦解并增强电导率。此外,新形成的ALF 4-可以运行共同介入并导致特定能力的增加。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad8a93]这是根据Creative Commons Attribution 4.0许可(CC by,https://creativecommons.org/licenses/by/4.0/)分发的开放访问文章,如果原始作品被适当地引用了任何媒介,则可以在任何媒介中不受限制地重复使用工作。
抽象背景的长期预后与胸痛患者的低 - 敏感性心脏肌钙蛋白T(HS-CTNT)浓度相关。我们研究了与一般人群相比的这些预后意义。方法从2010年12月9日至2017年8月31日纳入了瑞典七个急诊科(ED)的所有第一次访问。心肌损伤患者(任何HS-CTNT> 14 ng/L),包括心肌梗塞(MI)患者。标准化死亡率(SMR)和标准化发病率比(SIRS)计算为观察到的预期事件的比率。预期数是通过将同类的一年日历期特异性,特定年龄和性别的随访时间乘以一般人群中的相应发病率来计算。hr,定义为急性MI,心力衰竭住院,脑脑中风中风或心血管死亡,患有无法检测的(<5 ng/L)和低(5-14 ng/L)HS-CTNT的患者之间。结果总共包括11916例患者,其中69 090(62%)和42 826(38%)的峰值HS-CTNT浓度<5和5-14 ng/l。与一般瑞典人口相比,无法检测到的HS-CTNT患者的死亡率较低(SMR 0.83,95%CI 0.79至0.87),在所有患者≥65岁的患者中均观察到较低的风险,但患有MI诊断为1.39,95%CI 1.39,95%CI 1.32 1.32至1.47)。与低相对于不可检测的峰值HS-CTNT相关的第一个痕迹的调整后风险为1.6倍(HR 1.61,95%CI 1.53至1.70)。结论患者患有胸痛和无法检测到的HS-CTNT与普通人群相比,总体死亡风险较低,风险高度依赖。可检测的HS-CTNT浓度仍然与长期心血管风险增加有关。
我们开发了一个计算平台,包括机器学习和机械数学模型,以寻找在姑息治疗环境下施用铂类双药化疗的最佳方案。该平台已应用于晚期转移性非小细胞肺癌 (NSCLC)。玛丽亚居里国家肿瘤研究所格利维采分院接受姑息治疗的 42 名 NSCLC 患者是从 2004 年至 2014 年确诊的回顾性患者队列中收集的。对患者进行了为期三年的随访。收集的临床数据包括有关患者临床病程的完整信息,包括治疗计划、根据 RECIST 分类的反应和生存期。该平台的核心是数学模型,以常微分方程组的形式,描述铂敏感和铂耐药癌细胞的动态以及反映空间和资源竞争的相互作用。通过从联合概率分布函数中抽取参数值来随机模拟该模型。机器学习模型用于校准数学模型并使其与总体生存曲线拟合。模型模拟在三个层面上忠实地再现了临床队列:长期反应 (OS)、初始反应 (根据 RECIST 标准) 以及化疗周期数与两个连续化疗周期之间的时间关系。此外,我们研究了初始反应和长期反应之间的关系。我们发现这两个变量不相关,这意味着我们不能仅根据初始反应来预测患者的生存率。我们还测试了几种化疗方案,以找到最适合姑息治疗患者的方案。我们发现最佳治疗方案取决于肿瘤中各种亚克隆之间的竞争强度等。开发的计算平台允许在可接受的毒性范围内优化转移性 NSCLC 姑息治疗的化疗方案。该方法的简单性使其可应用于不同癌症的化疗优化。
B. 非易失性存储器 IP 非易失性存储器 (NVM) 宏广泛用于数字电路中,用于存储指令、用户数据或任何配置数据。在 PROMISE 中,NVM 宏保存用户定义的 FPGA 配置数据。FPGA 由多个 LUT 实例组成。一般来说,每个 LUT 都有配置信号,这些信号定义 LUT 执行的逻辑功能。同时,这些配置信号的集合定义了 FPGA 的特定用户功能。在 PROMISE FPGA 中,配置数据在通电时从 NVM 上传到 LUT 寄存器。显然,NVM 的数据容量等于 FPGA 配置信号的数量加上辐射加固技术所需的冗余位。在 PROMISE 中设计的 NVM 宏基于 180 nm HV CMOS 工艺中提供的 E2PROM 类型的 SONOS 单元。该单元有望提供令人满意的抗 TID 效应鲁棒性。E2PROM 类型的写入/擦除操作提供可靠的数据保留参数。单元耐久性(擦除/写入周期数)比 FLASH 单元类型差,但目标应用不需要高耐久性。通过使用标准 DARE RH 缓解方法,NVM 内存可抵御 SEL 和 SEU/SET。除此之外,还实施了具有单纠错双错检测 (SECDED) 功能的纠错码 (ECC) 作为 SEU 缓解方法。ECC 还提高了 NVM 的一般读取稳健性,因此在太空应用中非常需要。[3] 中详细描述了不同类型的纠错码。因此,NVM 宏将用作坚固且抗辐射的数据存储 IP。NVM 宏具有 344 kbits 用户数据容量,并由 32 位数据字组成,其中 24 位为用户数据,8 位为 ECC。它分为 2 个 32x22 页的存储体。每页包含 8 个字。内存组织参数在表 II 中提供。 NVM 具有标准同步并行用户界面,可简化读取操作。NVM 具有内置电荷泵以及所有控制逻辑,可根据用户指令执行擦除/写入操作。NVM 宏中实现了各种测试模式,以支持生产测试流程。断电模式是另一个内存功能,它
表格表 表 1:提交前和提交时监管活动摘要 ...................................................................................................................... 28 表 2:西罗莫司、依维莫司和 ABI-009 对肿瘤生长和存活率的影响(FDA 表) ................................................................................................................ 36 表 3:第 1、4 和 7 天肿瘤和血液中的药物浓度(FDA 表) ............................................................................................. 37 表 4:使用 ABI-009、西罗莫司或依维莫司治疗后磷酸化 S6 阳性百分比面积(FDA 表) ............................................................................................................. 37 表 5:西罗莫司和 Secorapamycin 在大鼠中的药代动力学参数(FDA 表) ............................................................................................. 40 表 6:ABI-009 临床药理学重点 ............................................................................................................................. 48 表 7:申请人对内在因素协变量亚组的分析(报告为平均值和 95% 可信区间) ........................................................................................................................................... 66 表 8:NDA 中包括的已完成和正在进行的临床研究 .......................................................................... 72 表 9:研究管理结构 ...................................................................................................................... 78 表 10:PEC-001 研究研究者现场审计 ............................................................................................. 85 表 11:PEC-001 研究服务提供商审计 ............................................................................................. 85 表 12:患者处置 ...................................................................................................................... 87 表 13:患者处置(FDA 分析) ............................................................................................. 88 表 14:方案偏差(入组分析集) ............................................................................................. 89 表 15:主要终点敏感性分析 ............................................................................................................. 90 表 16:患者人口统计学和基线特征(安全性分析集) ................................................................. 91 表 17:患者人口统计学和基线特征(疗效分析集) ................................................................. 93 表18:癌症病史(安全性分析集) .............................................................................. 94 表 19:PEComa 既往癌症治疗史(安全性分析集) .............................................. 96 表 20:PEComa 既往癌症全身治疗(安全性分析集 - 转移性组) …………………………………………………………………………………………………………………………………97 表 21:PEComa 既往癌症放射治疗(安全性分析集) ........................................ 98 表 22:PEComa 既往癌症相关手术(安全性分析集) ........................................ 100 表 23:超过 1 名患者按身体系统和医疗状况划分的既往和当前病史(安全性分析集) ............................................................................................................................. 103 表 24:超过 1 名患者按身体系统和手术程序划分的总体手术史(安全性分析集) ............................................................................................................. 105 表 25:给药周期数、治疗持续时间和输注次数(安全性分析集) ............................................................................................................................. 107 表 26:至少中断一次、剂量减少或剂量减少速率的患者数量以及中断输注的次数(安全性分析集) ............................................................................. 108 表 27:每位患者的实际剂量、每位患者的累积剂量、平均剂量强度和方案剂量百分比(安全性分析集) ............................................................................................. 110 表 28:超过 1 名患者总体的伴随用药发生率按 WHO 治疗主组划分(安全性分析集)..................................................................................................... 112 表 29:伴随手术发生率(安全性分析集)...................................................................................... 114
作为HR+,HER2阴性晚期或转移性乳腺癌治疗的初始内分泌疗法; C用于治疗HR+,HER2阴性晚期或转移性乳腺癌,内分泌治疗后疾病进展; D用于治疗成年患者HR+,HER2-阴性晚期或转移性乳腺癌,在内分泌治疗后疾病进展和转移性环境中的先前化学疗法。itoveBi®(Inavolisib片剂)是一种激酶抑制剂,与Ibrance结合使用,并用于治疗HR+的治疗,HER2(HER2),磷脂酰N-3-激酶(PIK3CA) - 置换,内分泌的横向疗法或转移性术治疗,后者是临后或转化的术治疗,后者是临后或转化的术治疗。10指南《国家综合癌症网络(NCCN)关于乳腺癌的指南》(6.2024 - 2024年11月11日),提出以下建议,以进行以下不可切除的(本地或区域)或IV期HR+和HER2阴性疾病,并在绝经后或预抑制象征性的术语中,以攻击卵巢疾病,以抗过度或抑制性疾病。 Kisqali + AI或Fulvestrant(类别1); Verzenio + Fulvestrant(类别1); Verzenio + AI(类别2a); Ibrance + AI或Fulvestrant(2A类)。5,6脚注中的准则状态表明,CDK 4、6抑制剂的选择存在争议,因为药物之间没有直接的比较研究,并且在III期随机研究中,研究人群存在一些差异。指南指出,如果在ibrance上存在疾病进展,则II期数据有限,可以支持在二线环境中使用Kisqali。该指南还指出,在III期随机对照试验中,Kisqali +内分泌治疗,Kisqali + Fulvesterant和Verzenio + Fulvesterant在一线环境中显示了总体生存益处。CDK 4,6抑制剂 +输水剂是非偏爱的产物作为第二和后续治疗的“首选方案”,如果CDK 4,6抑制剂先前未使用(类别1)。5指南指出,在第三阶段随机对照试验中,结合CDK 4、6抑制剂结合使用,在二线环境中显示了总体生存益处。在这种情况下,如果在先前的内分泌治疗和转移性环境中的先前的内分泌治疗和先前的化学疗法(2A类)中进展,则单人Verzenio是“在某些情况下有用的”(在某些情况下有用的)。对于HR+,具有PIK3CA激活突变的HER2阴性疾病,该指南建议ITOVEBI与Ibrance和Fulvestrant结合使用一线治疗(1级),在“在某些情况下有用”。对于乳腺癌的男性,该纲要建议对绝经后女性进行类似的治疗,只是使用AI的使用无效而没有抑制睾丸类固醇生成。6指南还建议Verzenio在HR+,HER2阴性,高风险的患者中与内分泌治疗结合使用2年,即辅助治疗(即≥4个≥4个阳性淋巴结淋巴结,或1至3个阳性淋巴结阳性淋巴结,以下:以下是3级疾病或3级疾病或tamor size size size size size 〜5 cm 2 cm)(类别2A)。7基于意向性治疗分析,中位总生存期为53.9paloma-2研究与安慰剂 + letrozole相比,在一线环境中,对于hr +,HR +,HER2阴性晚期乳腺癌而言,与安慰剂 + letrozole相比,与安慰剂 + letrozole相比,paloma-2研究未能显示出总体生存益处。