1. 飞掠航天器 2. 轨道器 3. 大气航天器 4. 着陆器 5. 探测车 6. 穿透器 7. 天文台航天器 8. 通信航天器 我们分别阐述这八个类别。 (另请参阅JPL公共网站,其中列出了过去、现在、未来和拟议的JPL机器人航天器任务的最新列表) 1.飞掠航天器 飞掠航天器进行太阳系探索的初始侦察阶段。它们沿着连续的太阳轨道或逃逸轨迹运行,永远不会被进入行星轨道。它们必须能够使用其仪器观察经过的目标。理想情况下,它们可以平移以补偿目标在光学仪器视野内的视运动。它们必须将数据下行链路到地球,并在其天线偏离地球点期间将数据存储在机上。它们必须能够承受长时间的行星际巡航。飞越航天器可能设计为使用推进器或反作用轮在 3 个轴上稳定,或连续旋转以保持稳定。飞越航天器类别的主要示例是旅行者 2 号,它与木星、土星、天王星和海王星系统进行了接触。飞越航天器的其他示例包括:
上下文。罗塞塔号航天器上的 OSIRIS 相机在彗星 67P/Churyumov-Gerasimenko (67P) 的彗发内测量的尘埃亮度相位曲线呈现出显著的 U 形。目的。我们的目标是将这些相位曲线与暂时模拟的尘埃样本的相位曲线进行比较,以评估可能导致这种形状的关键尘埃特性。方法。在实验室和微重力条件下,使用 PROGRA2 仪器对可能代表彗星尘埃颗粒的不同物理特性和成分的样本进行了光散射测量。结果。我们发现,最近开发的一系列行星际尘埃类似物的亮度相位曲线(用于拟合内黄道云的极化特性及其随太阳中心距离的变化)与 67P 的亮度相位曲线非常相似。关键的尘埃特性似乎与成分和孔隙度有关。结论。我们得出结论,67P 亮度相位曲线的形状与大量有机化合物(至少 50% 的质量)和蓬松聚集体(尺寸范围为 10 至 200 µ m)的存在有关。我们还证实了这颗木星族彗星的尘埃颗粒与内黄道云中的颗粒之间的相似性。
上下文。罗塞塔号航天器上的 OSIRIS 相机在彗星 67P/Churyumov-Gerasimenko (67P) 的彗发内测量的尘埃亮度相位曲线呈现出显著的 U 形。目的。我们的目标是将这些相位曲线与暂时模拟的尘埃样本的相位曲线进行比较,以评估可能导致这种形状的关键尘埃特性。方法。在实验室和微重力条件下,使用 PROGRA2 仪器对可能代表彗星尘埃颗粒的不同物理特性和成分的样本进行了光散射测量。结果。我们发现,最近开发的一系列行星际尘埃类似物的亮度相位曲线(用于拟合内黄道云的极化特性及其随太阳中心距离的变化)与 67P 的亮度相位曲线非常相似。关键的尘埃特性似乎与成分和孔隙度有关。结论。我们得出结论,67P 亮度相位曲线的形状与大量有机化合物(至少 50% 的质量)和蓬松聚集体(尺寸范围为 10 至 200 µ m)的存在有关。我们还证实了这颗木星族彗星的尘埃颗粒与内黄道云中的颗粒之间的相似性。
那一年,有两本新的科学期刊问世:1 月 5 日,法语版的 Journal des Sçavans 出版,由其创始人 M. Denis de Sallo 提供。另一本英文版的 Philosophical Transactions of the Royal Society 于 3 月 6 日出版。M de Sallo 绝不为新来者辩护——他的十二页中有八篇文章,随后在翻译中受到德国和意大利读者的称赞。1 这些贡献涉及的主题包括对 5 世纪作家 Vitensis 和 Tapsensis 作品的书评;对可以观察土星和木星的新镜头的评论;对一本关于打喷嚏的再版书籍的评论;笛卡尔两篇论文的遗作出版;以及摘录自牛津的一封关于连体双胞胎的信,其中包含他们的尸检。萨洛先生敦促读者,应该能够欣赏书评、名人讣告、物理和化学实验、艺术和科学发现(包括对天空的观察,更不用说对流星的观察)以及对动物的解剖学发现。读者印记写道,欧洲不应该发生任何可能激起文人好奇心的事情,而这本杂志却没有。2
学术咨询:Boca Raton校园:所有本科生的心理生物学专业的学术建议将由Charles E. Schmidt科学院的学生服务办公室的工作人员处理。此建议将满足主要以及必须完成的其他一般毕业要求的要求。学生服务办公室位于234室的科学与工程大楼(SE)。学生可以通过在线登录AdvisorTrac System在线访问http://advisortrac.science.fau.edu.edu/advisortrac/default.html来安排该办公室的工作人员的建议。需要进一步帮助的学生可以通过电话561-297-3700与办公室联系。心理学系教职员工(在所有校园内)可供学生提供职业选择,研究生培训,研究机会,有关该领域特定子学科的信息的指导等。强烈鼓励本科生寻找一位教师导师,以补充科学学院的学生服务办公室提供的全面学术计划。其他校园:戴维校园的建议是由(954)236-1103的戴维学生服务办公室的学术协调员提供的。在木星的麦克阿瑟校区提供建议,由学术咨询和服务(561)799-8697或(561)799-8698进行。
,我们提出了一种通过采用拉格朗日点的外来特性来指导带电颗粒(例如电子和质子)的方法。通过围绕这些平衡点展开的动力学使这种飞跃成为可能,稳定地捕获了这种粒子,类似于木星轨道上的木马小行星的方式。与传统的方法论不同,该方法可以使带电颗粒的聚焦或三维储存,而拟议的方案可以指导小型横截面区域中的非偏见和相对论电子和质子在长期不变的情况下以长期不变的方式引导,而无需任何可观的能量损失 - 与光子传输相似于光子的光合物。在这里,通过采用扭曲的静电电势来实现粒子引导,而静态电势又在真空中引起稳定的拉格朗日点。原则上,可以在由此产生的波导的基本模式中实现指导,从而提出了在量子域中操纵这些颗粒的前景。我们的发现可能在科学和技术追求的广泛应用中很有用。这些应用可以涵盖电子显微镜和光刻,粒子加速器,量子和经典通信/传感系统,以及量子网络中节点之间的纠缠量子的方法。
空间场景的仿真提出了特定的挑战,通常不通过通用图像模拟器来处理这些挑战。基于视觉的导航解决方案需要尽可能接近真实图像的培训和验证数据集。我们的团队和合作伙伴开发了用于太空探索的计算机视觉算法(火星,木星,小行星,月球)和轨内部操作(Rendezvous,机器人手臂,拆除太空碎片)。有一波针对Cislunar轨道或月球表面的任务。当然在任务之前很少获得“真实图像”。基于地面的测试设施,例如机器人测试台,启动模型或缩放任务类似物的体验(火星地形类似物,无人机飞行等)很有用,但是它们是有限的。例如,很难捕获房间大小的设施中的空间场景的规模(例如由扩展光源照亮的小物体)。还可以从以前的任务或实验实验中获得有限数量的图像,当需要数千个以表示算法会遇到的各种可能配置时。计算机模拟的另一个决定性资产是,基地真相是完全知道的,而现实生活实验容易出现错误和偏见,这很难估计或缺乏准确性。
摘要 重力辅助机动是一种航天器通过接近天体来改变其轨道能量和角动量的技术。其结果是大大减少了燃料的使用和飞行时间。一些行星际任务已经应用了它,比如著名的旅行者号、水手号或伽利略号。天文学家至少在两个世纪前就通过观察彗星在靠近木星后轨道的变化了解了这一概念背后的力学原理。这一现象在航天领域的引入是一个非常成功的故事,并引发了许多人声称重力辅助机动的提出发生在 60 年代初。然而,将这种机制用于行星际航天的想法可以追溯到 20 世纪 20 年代。关于谁是第一个提出这个想法的争论给这些早期的先驱者蒙上了一层阴影。从这个意义上讲,本文旨在讨论前航天时代这种操作的历史,试图展示其早期历史上的一些重大步骤。它涵盖了从关于这个主题的第一批研究到太空时代的开始,随着人造卫星的发射。选择这个时间段是为了揭示这些早期作品,这些作品将天文现象引入航天。将这些作品置于其历史背景中,可以突出它们的重要性,因为它表明其中一些作品远远领先于时代。其中,Tsander 在 20 世纪 20 年代中期创作的作品最为出色。
•收入为7.62亿欧元(10 64万欧元)。收入大大降低,因为伍德斯派工的生产设施的技术项目于2023年完成。•此期间的运营结果为欧元-18 3.49千(欧元–20 9.26千)。•总投资为5 7.83亿欧元(8 96.3万欧元)。•2024年底的净现金为40 8.81亿欧元(54 4.26亿欧元)。•期末期末永久雇员人数为57(76)。•Spinnova于2024年3月宣布了更新的策略,重点是技术销售。•在2024年3月,为了支持更新的战略并实现盈利能力目标,Spinnova开始为其人员进行更改谈判,并宣布对管理团队进行更改。•Spinnova PLC和Suzano S.A.签署了一份无约束力的意向书(LOI),涉及木基型Spinnova®纤维的潜在新生产设施。在2024年期间未满足到达下一个阶段所需的目标过程指标,因此该项目未按计划在2024年之前进入工程前阶段。•Spinnova和Ecco就其合资公司Ressin的未来计划签署了一封意向书。•Spinnova和Valmet签署了有关Spinnova客户提供工艺设备的合伙协议。•Spinnova的合资木星和PUMA进入了多年的意图信,以固定Spinnova®纤维量。
Quadrelli 博士是首席研究技术专家,也是 JPL 机器人部门机器人建模与仿真小组的主管。他是复杂空间系统动力学和控制建模方面的专家。他拥有意大利帕多瓦机械工程学位、麻省理工学院航空航天学硕士学位和佐治亚理工学院航空航天工程博士学位。他曾是哈佛-史密森天体物理中心、造纸科学与技术研究所的客座科学家,以及加州理工学院研究生航空实验室的讲师。1997 年加入 NASA JPL 后,他为许多飞行项目做出了贡献,其中包括卡西尼-惠更斯探测器、深空一号、火星飞行器测试计划、火星探测车、空间干涉测量任务、自主会合实验和火星科学实验室等。他曾担任木星冰卫星轨道器项目的姿态控制负责人,以及激光干涉仪空间天线的综合建模任务经理。他曾领导或参与多个独立研发项目,涉及计算微力学、系留空间系统动力学与控制、编队飞行、充气孔径、高超音速进入、精确着陆、柔性多体动力学、航天器群制导、导航与控制、地面力学以及光学系统精确指向等领域。他目前的研究兴趣是多领域、多物理、多体、多尺度基于物理的建模、动力学和控制。他是美国航空航天学会副研究员、美国宇航局高级概念研究所研究员和加州理工学院/凯克空间研究所研究员。