乌干达位于大湖地区,总面积为 243,145 平方公里,其中 16% 为陆地保护区,包括 10 个国家公园、506 个中央森林保护区、191 个地方森林保护区、11 个野生动物保护区、12 个野生动物保护区和 5 个社区野生动物管理区 (pers. comm. G. Owoyesigire,2021 年 8 月;联合国环境规划署世界监测中心,2021 年;UWA 2018)。乌干达野生动物管理局 (UWA) 负责管理保护区。乌干达拥有丰富的生物多样性,包括世界现存山地大猩猩 (Gorilla beringei beringei) 种群的 53.9%;50% 的非洲鸟类;39% 的非洲哺乳动物;19% 的非洲两栖动物物种和 14% 的非洲爬行动物物种;记录的蝴蝶有 1,249 种,鱼类有 600 种(NEMA,2019a)。大多数野生动物都生活在保护区内,但该国野生动物物种历史上曾大幅减少,而且某些物种的灭绝趋势似乎仍在持续(UWA,2018)。过去,偷猎和非法过度捕猎导致该国物种丰富度丧失(UWA,2018)。乌干达野生动物保护和生物多样性面临的主要威胁是偷猎、栖息地破碎化、退化和丧失、收集木炭和木柴、气候变化、入侵物种、寄生虫和疾病、过度采伐动植物、塑料废物和水体污染以及人与野生动物的冲突(NEMA,2019a;Rossi,2018;UWA,2018)。这些威胁的根本原因包括人口增长、治理薄弱、非农就业机会有限、贫困、缺乏意识和土地使用权不安全(Anon,2015a,Rossi,2018)。
能源转型一直是人类进化的关键决定性过程之一(Smil 2017a)。第一次(长达数千年的)转型是从依赖传统生物燃料(木材、木炭、作物残渣)和有生命的原动力(人类和动物的肌肉)转向越来越普遍地依赖无生命的能源转换器(水车、风车)和用于田间工作和运输的更好的驾驭牲畜。向化石燃料的转型(燃烧产生热量、热电和动能)早在 16 世纪的英国就开始了,但它直到 1800 年之后才在欧洲和北美开始流行,而直到 1950 年之后才在亚洲大部分地区流行起来。这一转型伴随着对初级电力的日益依赖(自 19 世纪 80 年代以来以水力发电为主,自 1950 年代末以来核能发电也发挥了作用)。 1800 年后,从传统生物燃料向化石燃料的转变导致了相对脱碳的逐渐进行,但绝对二氧化碳排放量却大幅增长。相对脱碳最明显的表现是主要燃料的 H:C(氢碳比)比率不断上升:木材的 H:C 比率不超过 0.5,煤炭的 H:C 比率不超过 1.0,最轻的精炼燃料(汽油和煤油)的 H:C 比率上升到 1.8,而天然气的主要成分甲烷(CH 4)的 H:C 比率显然上升到 4.0(Smil 2017b)。每单位能量的二氧化碳排放量则相反:天然气燃烧每千兆焦耳产生的二氧化碳不到 60 千克(kg CO 2 /GJ),而液态碳氢化合物的 H:C 比率在 70-75 千克/GJ 之间,95 千克/GJ 是
当电子技术面向医疗保健和食品领域时,设备的安全性就成为强制性要求。当电子系统需要与人体内部直接互动,与食物或药品一起摄入时,安全性就显得尤为关键。在这一框架下,可摄入电子产品迄今已取得显著进步,为新时代的诊断和治疗铺平了道路。[4–8] 然而,迄今为止可用的可摄入系统[9]除了体积设计和使用后需要回忆外,还存在严重缺陷,主要表现为使用有毒和非一次性材料,不仅对消费者健康而且对环境都构成危害。为此,最近提出“可食用电子产品”[10–12],设想电子系统能够满足关键的电子功能,同时具有可持续性、无毒、摄入安全且具有成本效益。这一新兴领域的独特之处在于利用不同性质的可食用材料(如食品、药物、食用金属、食用色素、染料和聚合物)作为电子元件,根据其电子特性,提供所有必要的构件:导体、绝缘体、半导体。由于绝对安全的成分,可食用设备在完成其任务后会在体内降解,这意味着不会产生任何潜在的副作用。由于处于新兴阶段,该领域的实例很少。然而,这一新范式的可行性依赖于几个鼓舞人心且颇为奇特的可食用原型,特别是基于食物的电子元件,例如奶酪超级电容器[13]、西兰花麦克风[14]、木炭基生物燃料电池[15]、丝绸传感器[16]基于食用色素的晶体管[12,17]等。为了履行跟踪、监控、传感和数据传输等基本电子职责,可食用电子系统将需要有源电路。在这种情况下,晶体管是未来可食用系统的骨干组件,低压/低功耗操作是必需的。
更直观的用户界面。1 1 111 ~~~~~~~~~~ ---广泛地基于〜〜i〜i 1111 1111的PCH和Macintosh,Da的图片采用了一种称为超级图的技术-Da'spic Tur ewas瓷砖,在我们的屏幕区域中使用了屏幕区域,在我们的ret er ret e re c hin o c hin gie g rive to rive to nove of to nove of'瓷砖。每次功能最后一个JSS u e。进行了更改,适当的瓷砖被重新绘制而不是enti re屏幕,使屏幕更新大大快于其他可能。da的图片具有许多工具,包括铅笔,橡胶,木炭和油漆。lt在任何ST,TI或Falcon上运行,并具有虚拟内存SUP-内置。费用为149英镑;与Falcon实时的真实彩色Digitiser屏幕矩阵的捆绑交易预计为299英镑。da的矢量专业人员是即将发布的另一种产品。他对非常成功的DA的向量的具有比其前身的许多改进,包括向量对象的变形,使用摄像机遵循向量路径的能力,实时旋转矢量图形以及矢量矢量化IMG文件的能力以及半色调。 此外,该程序的动画功能已升级。 一个有趣的新功能是能够将不同的镜片叠加在图片上,包括彩色或具有比其前身的许多改进,包括向量对象的变形,使用摄像机遵循向量路径的能力,实时旋转矢量图形以及矢量矢量化IMG文件的能力以及半色调。此外,该程序的动画功能已升级。一个有趣的新功能是能够将不同的镜片叠加在图片上,包括彩色或
摘要简介:环皮二苯甲酸(CPA)是一种由各种真菌物种产生的霉菌毒素,例如曲霉(A. flavus)。这项研究旨在限制和控制烟草抗污染小麦粉的CPA产生水平。材料和方法:从埃及的各个位置收集小麦粉样品(35个样品)。确定并确定真菌污染。维持曲霉的纯菌落并测试了CPA的生产。不同的程序,例如紫外线处理,热处理,材料吸附和乳酸杆菌的生物吸附。用于控制和降低CPA水平。结果:在24个样本中,14个A.黄素分离株(58.33%)能够产生CPA。酵母蔗糖汤是CPA生产最有利的培养基,产生290.6 µg/100 mL干生物量。紫外线对不同暴露时间的CPA的合成产生了影响,暴露60分钟后降低了45.5%。CPA水平随温度和暴露时间的增加而降低,在100°C下最大减少了71.1%,持续30分钟。木炭是最有效的吸附材料,占CPA的53.3%。嗜酸乳杆菌(L. condophilus)是最有效的生物吸附剂,占CPA的96.0%以上。将嗜酸乳杆菌细胞的接种物增加5×107,将CPA水平降低了82.1%。结论:非生物和生物控制措施的多样性及其有效性可能为控制和降低CPA水平提供了新的希望。关键字:曲霉曲霉,环皮二唑酸,乳酸杆菌属,超紫罗兰色引用:Abdelsalam Ayad Ayad A,Fadelsalam Ayad A,Fadel Alsaffar M,Fadel Alsaffar M,Hamza Merza Z,Farouk Z,Farouk Ghaly M.曲霉中含有小麦粉的酸水平。J Appl Biotechnol Rep。 2024; 11(4):1439-1 doi:10.30491/jar.2024.478289.1784
在矿物质土壤中,土壤有机物和粘土 +粉砂含量之间存在正相关关系,而土壤n矿化百分比与粘土 +粉砂含量之间存在负相关关系。对于土壤C,由于沙质土壤中存在木炭(惰性C),关系不太明显。土壤中有机物的物理保护程度随土壤的粘土和淤泥含量而增加。在沙质土壤中,有机物显然仅通过粘土和淤泥颗粒的吸附或涂层而在物理上受到保护,而在细纹理的土壤中,有机物也受到其在小毛孔和聚集体中的位置的保护。每种土壤都具有与粘土和淤泥颗粒相关的最大能力来保留有机C和N。土壤具有土壤有机物的保护能力的饱和程度,而不是土壤纹理会影响施加残留的残留物的分解速率。细菌的生物量与颈部尺寸为0.2至1.2 um的毛孔与毛孔之间的毛孔与毛孔之间的毛孔分离,而孔与大多数NEMATOD在30和90 UM之间的毛孔分离,该孔的分离是孔,该毛孔的孔隙均与90和90 UM的颈部之间相关。土壤中的细菌。食物网的计算表明,观察到的C和N矿化速率不能从微纤维活性的差异中解释,但必须是由观察到的,但迄今为止迄今无法解释的细纹和粗纹质土壤之间的C:N比的差异。使用二氧化硅悬浮液作为重型液体,开发了一个简单的过程,将土壤有机物分为大小和密度分数。分解速率的分数有所不同,可用于有机物动力学模型。掺入土壤中的基层C从可溶性和轻型宏观有机体转移到中间和重型宏观有机体分数,并积聚在微聚体中。在所有分数中,基层的C分解速度比土壤衍生的C更快。
豆科家族中的氮固定植物(Fabaceae)可能会显示出对生物炭添加的较大正面反应,因为它们可以补偿降低生物芯片污染土壤中N的能力。先前的研究还表明,生物炭可能会对豆类具有特定的发育影响,包括增加的根结点和形态改变。我们检查了在常见的花园实验中,豆类和非葡萄糖热带树对生物炭的生长和形态测量反应。四种豆类物种(Acacia auriculiformis,A。mangium,delonix gegia和pterocarpus santalinus)和四种非葡萄糖(Eucalyptus alba,Melia azedarach,Swietenia azedarach,Swietenia ophopherla和cumini apeps and Atsss and atsssplie and woodss)与A型woode tore andsapling atsapling at a andsapling atsapling atsapling atsapling。 t/ha。总体而言,观察到生物炭添加对树苗性能的强烈积极影响,总生物量平均增加了30%,相对于直径增长,高度显着增加。物种在反应上显示出明显的差异,物种和生物炭处理对生长指标的互动效果很强。豆科植物物种的平均增加略高于非葡萄糖。但是,物种之间的反应是可变的,两个相思物种显示出最大的反应,导致非显着模式。基于文献的热带和亚热带树的荟萃分析同样表明豆类的生物炭反应更高,但也没有统计学意义。此外,实验结果表明物种和生物炭对土壤pH和其他土壤特性的互动效果很大。某些豆类分类群(和其他分类单元)对生物炭的高增长反应,以及对土壤特性的明显物种特异性影响,可能反映了在森林恢复和增强的降级热带景观中,可以利用对火灾扰动的进化反应。关键字:相思,分配,异晶,生物炭,木炭,fafaceae,形态计量学,根淋巴结
目标:肯尼亚承诺到 2028 年实现现代能源烹饪服务的普遍使用,并加快实现其清洁烹饪目标的行动。有利环境 7.1.1 加强和实施优先考虑清洁烹饪解决方案的政策和监管手段和战略,以消除制约该行业发展的差距 7.1.2 建立和加强政治意愿,以加速可持续的清洁烹饪转型 7.1.3 利用现有的权力下放的政府系统来倡导清洁烹饪。加强供应 7.1.4 通过创新部署能够反映国家能源供应比较优势的基础设施和规划投资。这意味着要优先考虑该国位置最好的清洁烹饪基础设施 7.1.5 将该国定位为清洁烹饪生态系统投资和研究的首选目的地 7.1.6 动员和促进清洁烹饪行业发展的创新融资 刺激需求 7.1.7 加强和维持公民参与努力,推广清洁烹饪解决方案 7.1.8 赋予社区特别是妇女、弱势群体和青年人权力,使他们采用清洁烹饪,不让任何人掉队 跨领域问题 7.1.9 制定强有力的监测和报告框架,以便有效跟踪进展(知识管理门户) 7.1.10 促进清洁烹饪领域的创新、研究和开发 7.1.11 建设参与向清洁烹饪过渡的参与者的能力 7.1.12 建立推动实现全民清洁烹饪所需的伙伴关系和合作关系 时间范围:2021-2028 目标背景:全球有 380 万人因家庭原因导致的疾病而过早死亡空气污染(WHO,2018)主要是由于使用不清洁燃料和传统炉灶烹饪造成的。必须紧急采取措施加快清洁能源的普及速度,重点是清洁烹饪,以扭转这一趋势。肯尼亚全国人口普查(2019)显示,66.7% 的人仍使用木材或木炭做饭。只有约 24% 的家庭使用液化石油气 (LPG) 作为主要烹饪燃料,而其他清洁解决方案的使用微乎其微。导致空气污染的主要原因是
2024 年 2 月 24 日 主题:Synexis LLC 对关于消费空气净化器测试程序和节能标准信息请求的回应,卷宗编号 EERE-2021-BT-STD-0035 和 EERE-2021-BT-TP-0036 尊敬的先生或女士, Synexis LLC 谨提交此信函,以回应美国能源部 (DoE) 于 2021 年 9 月 16 日在《联邦公报》上公布的关于空气净化器符合涵盖产品的初步决定。 Synexis LLC 是一家在美国开发、制造和商业化室内空气净化设备的小型企业。 Synexis 致力于为客户提供安全有效的设备,通过与标准清洁和消毒方法相结合提供额外的保护,帮助改善室内空气质量。由于 Synexis 设备符合新奥尔良电力局 2021 年 9 月空气净化器定义中确定的纳入标准,因此我们对拟议裁决的结果有着既得利益,并对 RFI 中确定的部分提出以下一般性意见。定义 • DoE 必须修改并进一步澄清其对消费空气净化器的定义 DOE 目前对消费空气净化器的定义并未考虑到该领域存在的所有各种技术,进一步澄清可能会有所帮助。由于 DoE 考虑将各种测试方法和标准纳入拟议裁决范围的适当性,下面描述的澄清和区分要点对于讨论至关重要。虽然我们同意拟议定义中的第 (1) 和 (2) 点,也同意第 (3) 和 (4) 点,即消费空气净化器通过紫外线以外的方式去除、破坏或灭活空气中的颗粒物和微生物;可以通过添加有关这些设备的作用机制和声明的信息来进一步澄清第 (3) 和 (4) 点。例如: - 包含 HEPA、木炭、碳、MERV 或其他孔径足以去除和/或破坏空气中的颗粒物和微生物的过滤器和/或利用光催化氧化、双极电离、干过氧化氢或其他类似技术(带或不带额外过滤)作为去除、破坏或灭活空气中的颗粒物和微生物的手段的设备 - 旨在在人类(或其他生物)占用者存在的情况下持续运行的设备。虽然声称以紫外线作为其作用方式的设备是合理的排除,但这些在范围内的设备类型的具体示例将为定义的这一部分提供额外的清晰度。关于定义点 (5),我们认为便携式“空调”或包含 HEPA 过滤器的类似设备以及任何与清洁空气相关的补充声明(除了
(加拿大心理健康委员会,2023年)个人的睡眠,工作和社交能力(克莱顿,2020年)。在全球范围内,估计每年为抑郁症和焦虑而损失的每年1万亿美元的生产力损失(世界卫生组织,2022年)。尽管这些统计数据主要解决一般焦虑症,但可以表明,生态焦虑是由于逮捕与气候危机相关的威胁而引起的一种焦虑形式,这会导致这些令人震惊的统计数据。尽管对生态焦虑的讨论日益增长,但在理解其在工作场所环境中的含义方面仍然存在显着差距(Joshua等,2022)。有限的研究探索了生态焦虑与工作场所动态之间的联系,突出了一个关键的进一步研究领域(Brooks and Greenberg,2022年)。新兴文献表明,高水平的生态焦虑与负面的情绪和身体反应(例如悲伤,恐惧和愤怒)有关,并可能导致孤立,失眠,压力和抑郁(Clayton,2020年; Gousse-Lissard和Lebrun-Paré,2022年)。相比之下,低或中等水平的生态焦虑可能与正压力或eustress有关,并且可以鼓励个人采用促环境行为(Joshua等,2022; Pikhala,2020; Verplanken等,2020)。在这种情况下,亲环境行为(PEB)可以构成一种生态反焦调节策略的一种形式,该策略的重点是在存在快速和具体的反馈时解决问题(Pikhala,2020; Lebrun-Paré,2018年)。在个人和组织层面上解决生态焦虑至关重要。PEB有助于使组织和/或社会更加可持续性(Lamm等,2013)。在工作场所内,木炭公司将通过节省水,回收利用并减少废物和能源消耗来帮助员工的活动最大程度地减少人们行动的负面影响(Stern,2000)。在员工层面上,价值观和自信心很重要,而在组织层面,环境动态能力,领导力和人力资源管理实践可以发挥重要作用(Unsworth等,2021)。此外,组织的环境影响受到其制度环境的影响(Bryant等,2020),需要组织内部的变革过程(Unsworth等,2021)。为了应对这些挑战,探索列温的变革理论可能是计划和交流组织内部干预措施的宝贵工具(Lewin,1947年)。这种方法允许与工作人员,利益相关者和目标人群进行透明沟通和讨论(Romão等,2023)。