在追求一个更健康,更可持续的世界时,莫林加(Druminga)的培养和利用是希望的灯塔。印度是莫林加最大的生产国,长期以来一直认识到这种“奇迹”树在增强健康和福祉方面的潜力。传统上在全国各地种植,辛格加(Moringa)以各种名称而闻名,例如鼓槌树,辣根树和“ sahjan”,已从宅基地过渡到以其出色的健康受益而闻名的超级食品。值得称赞的举措,加上政府的支持,促进了莫林加的大规模生产和营销。但是,旅程并没有在这里结束。存在着扩大全国范围内生产覆盖范围并将基于莫林加的企业建立为可持续生计选择的迫切需求,尤其是对于边缘化的社区和妇女。尽管全球需求不断增长,但高质量的新鲜和干燥的辣木原材料的稀缺仍然存在,这使这一差距弥补了这一问题。te政府认识到了辣木的潜力,在通过各种国家水平的计划(如Deendayal antyodaya yojna-National-National Rural乡村生计(Day-nrlm))(Day-NRLM)和Mahatma Gandhi国家农村就业就业范围(Mahatma Gandhi国家农村就业保证)(Mahatma Gandma nign)(Mahatma nreg)(Mahatma nreg)促进其生产,加工和营销方面。在串联中,印度 - 德国发展合作项目“通过适当的发展行动增强农村的韧性(ERADA)”将莫林加种植园纳入了整体生计模型。私人企业,非政府组织和企业社会责任计划也与此事件倡导这一事业。
*** 南卡希亚斯大学 (UCS),Campus Sede,R. Francisco Getúlio Vargas,1130 - Petrópolis,RS **** 圣保罗州立大学 (UNESP) 工程学院材料与技术系、疲劳与航空材料研究组,瓜拉廷格塔,SP,巴西 ✉ 通讯作者:Heitor L. Ornaghi Jr.,ornaghijr.heitor@gmail.com 2020 年 6 月 15 日收到 木质生物质因其成本低、可再生和环境友好而成为生产生物能源的化石燃料的替代品。为了将生物质用作能源,强烈建议了解其热降解行为。这项工作重点研究了巴西木材行业常用的不同树种(湿地松 (PIE)、大桉 (EUG) 和伊塔乌巴 (ITA))的木纤维的热降解。使用 F 检验统计工具,基于最常见的理论数据预测了它们的降解动力学和整体热行为。发现最可能的降解机制是所有测试的木纤维的自催化,具有三个不同的降解步骤。获得的结果与最近在文献中使用其他拟合方法报告的结果一致。发现纤维素是阿伦尼乌斯参数的主要贡献者,而半纤维素是反应级数的主要贡献者。关键词:建模和仿真、木纤维、热分解、热解、模型拟合引言根据欧盟 28 国 (EU-28) 的政策,预计生物能源(包括生物热能、运输用生物燃料和生物电能)将贡献 2021 年可再生能源目标的一半。相比之下,2015 年,生物能源消耗量是 2000 年石油消耗量的两倍多。1 全球使用的森林生物质的一次能源供应量估计约为 56 EJ,这意味着根据世界能源理事会的数据,木质生物质占每年供应的所有能源的 10% 以上,2 每年约 90% 的一次能源来自所有形式的生物质。3 因此,考虑到木材固有的可再生性,木质生物质和木材加工残留物对于满足未来的能源需求至关重要,尽管可持续管理森林资源势在必行。
前列腺癌 (PCa) 是最常见的癌症类型之一,其在 70 岁以上的老年男性中的发病率呈上升趋势。在药物治疗中,天然化合物及其结构类似物已用于治疗癌症。多项研究已证明亚麻(Linum usitatissimum,俗称亚麻)在治疗各种癌症方面具有治疗潜力。然而,亚麻衍生化合物作用于 PCa 的具体机制仍不清楚。本研究旨在通过鉴定和评估亚麻嫩芽中的生物活性化合物来填补这一空白。GCMS 分析使用 Shimadzu(GCMS-TQ8040 NX)进行。仪器温度设置为从 50°C 到 300°C,持续 37 分钟,以得到 100% 的总峰面积。分子对接研究是使用 AutoDock tools 4.2 版软件进行的。使用 SWISSADME 在线 (http://www.swissadme.ch/) 和 ProTox-3.0 在线 (https://tox.charite.de/protox3/ index.php?site) 预测工具预测和分析 ADMET 特性。GC-MS 分析鉴定了亚麻嫩芽甲醇提取物中的 58 种植物化合物。其中,CID11002708 和 CID290541 对 PCa 靶蛋白表现出最高的结合亲和力。ADME/T 结果显示这些化合物具有低毒性和特定的代谢特性。考虑到分子对接和 ADMET 评估的结果,可以得出结论,CID11002708 和 CID290541 有望成为治疗 PCa 的新型抑制剂。目前的结果可以通过体外和体内研究进一步验证。
申请人如需确认其申请结果,请参考以下内容。只有被选中的申请人才会收到联系和通知。(外部(非基础)申请人除外,他们收到
申请人如需确认其申请结果,请参考以下内容。只有被选中的申请人才会收到联系和通知。(外部(非基础)申请人除外,他们收到
6.主要职责:根据需要驾驶消防车到达现场,在队长指挥下,执行灭火、救援及辅助紧急医疗任务。灭火时,将水带连接并部署在现场,通过喷水或喷射化学药剂来灭火。携带灭火器,必要时可灭火。确定火源,隔离区域,防止火势蔓延。到达现场后,他们会根据需要使用撬棍或斧头等设备拆除障碍物。救出陷入火灾或烟雾中的人员并给予他们急救。 维护、调整和简单维修消防和救援行动所需的工具、设备、软管、梯子、消防车等。 参加各种培训课程并上课以学习工作所需的技能和知识并保持认证。 注意健康管理,注意体质,注意卫生。还履行分配的相关和附带职责。 突出的工作条件(如果有):过热或过烟、密闭空间、灾区或任何天气条件。 在厚木空军基地,他们有时会在喷气发动机性能测试期间在消防车内或附近等候。 * 此职位被指定为任务必需职位。任职者可能被指示在任何时间、任何交通/天气条件下报到和/或被指示继续执勤。您可能会被要求随时上班,无论交通或天气状况如何,或者您可能会被要求留在工作场所值班。 7. 资格/身体要求 BWT 3-3:
报告介绍了一项研究,其中使用预定的制造方法将轻木、白蜡木和桦木制成透明木材。透明木材有许多可能的应用,包括节能建筑、包装、太阳能电池和电子设备。这项研究的目的是比较获得的透明样品的形态和光学特性,并将这些结果与它们的微观结构联系起来。这样做是为了确定哪种木材最适合预定的制造方法。所选的制造方法包括三个步骤:脱木素、溶剂交换和聚合物渗透。该工艺的第一步,即脱木素,目的是去除木质素,木质素是木材中赋予木材颜色的成分。这是通过在酸性环境中用醋酸盐缓冲液和亚氯酸钠进行化学处理,同时诱导加热来实现的,木材样品由此变白。然后将样品放入真空干燥器中,脱木素化学品首先与乙醇交换,然后与丙酮交换。乙醇可防止纤维收缩,丙酮可去除木材结构中的最后化学残留物。在最后一步聚合物渗透之前,甲基丙烯酸甲酯单体聚合成低聚物。然后在真空条件下将它们渗透到木材样品中,在那里它们聚合成聚甲基丙烯酸甲酯 (PMMA)。PMMA 具有与木材相似的折射率,这减少了光散射并增加了样品的透明度。然后将木材样品包装在两块玻璃板之间,用铝箔包裹,并在烤箱中加热以完成聚合。此后,获得透明的木材片。对木材样品的光学特性和形态进行了表征。为了确定光学特性,测量了透射率和雾度。透射率表示有多少光可以穿过样品,而雾度表示与透射率相关的光散射量。这些参数是根据 ASTM D1003“透明塑料雾度和透光率的标准方法”测量的。使用扫描电子显微镜 (SEM) 表征样品的形态,并获取高分辨率图像。通过这些图像,可以分析木材样品的微观结构,并评估脱木素和聚合物渗透的程度。光学特性测量结果表明,轻木的透光率最高(81-87%),其次是桦木(74-83%),然后是白蜡木(早材 66-78%,晚材 74-83%)。此外,轻木的雾度约为 65-70%,桦木约为 70-75%,白蜡木约为 74-80%。分析 SEM 图像后,得出结论:轻木的脱木素程度最高。这是通过观察纤维之间的细胞壁角来确定的,未经处理的木材中细胞壁角充满了木质素。观察到这些空间在脱木素的轻木中大多是空的,这表明这种木材的脱木素程度最高。由于所有样品中都有气穴,因此三种木材的聚合物渗透程度被认为是相同的。总的来说,这导致轻木是三种木材中最透明的,因此可以认为它最适合这种制造方法。