简介低地和高地社区历史上使用了农林业方法。森林农民需要这些方法来可持续管理其生计土地资源。人类已经使用综合土地利用系统来满足每日生存需求,同时平衡农业产量和生态保护(Rezekiah等,2022)。诸如森林砍伐,土地退化和不可持续的生态系统管理等全球问题威胁到这些社区,并经常导致土地争端(Carius等,2018)。这些问题可能会影响农作物产量和农民收入。在农林业中,土地资源至关重要,因为社区森林农民的收入取决于他们饲养的植物的规模和种类(Fitri,2020年)。全球气候变化为农林业提供了难得的机会来存储大型
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
简介低地和高地社区历史上使用了农林业方法。森林农民需要这些方法来可持续管理其生计土地资源。人类已经使用综合土地利用系统来满足每日生存需求,同时平衡农业产量和生态保护(Rezekiah等,2022)。诸如森林砍伐,土地退化和不可持续的生态系统管理等全球问题威胁到这些社区,并经常导致土地争端(Carius等,2018)。这些问题可能会影响农作物产量和农民收入。在农林业中,土地资源至关重要,因为社区森林农民的收入取决于他们饲养的植物的规模和种类(Fitri,2020年)。全球气候变化为农林业提供了难得的机会来存储大型
我们查阅了全球可用的木质生物质来源的文献,以确定其是否适合作为新西兰国内生物能源战略的一部分。这些信息说明了全球大规模利用的三种主要木质生物质能源流:现有人工林和木材加工流的残余木质生物质;短轮伐期矮林和短轮伐期林业。国际上优先考虑的每种生物质流的树种由各个森林制度本身决定。就残余木质生物质而言,这些树种是人工林的典型外来或本土针叶树种,如锡特卡云杉、花旗松、松树和桉树。短轮伐期矮林利用适合矮林的树种,如柳树、杨树和刺槐。短轮伐期林业迄今为止仅在热带国家以工业化规模建立,利用了生长速度快、适应热带气候的桉树树种。目前全球范围内尚无已知的政府所有的生物质专用林。
对可持续农业实践的需求不断增长,促使人们探索农机中的先进材料,以提高效率、减少环境影响和提高耐用性。本研究对两种有前途的材料进行了比较分析:木质聚合物复合材料 (WPC) 和纤维增强聚合物 (FRP),重点关注它们在农机中的应用。WPC 是木纤维和聚合物树脂的组合,在可再生来源、生物降解性和成本效益方面具有优势。相比之下,FRP 由嵌入聚合物基质中的玻璃、碳或芳族聚酰胺等纤维组成,在恶劣的农业条件下具有出色的强度重量比、耐腐蚀性和耐用性。该研究评估了这两种材料在应用于农机关键部件(包括结构部件、工具、油箱和人体工程学特征)时的机械性能、环境影响、制造工艺和性能。这两种材料都有助于提高可持续性,FRP 在耐用性和抗化学降解性方面优于 WPC,使其更适合在农机中长期应用。然而,对于某些非承重部件来说,WPC 是一种更具成本效益和更环保的替代方案。研究结果表明,在农业机械设计中同时采用 WPC 和 FRP 的混合方法可以为可持续农业的未来提供性能、可持续性和成本效益的最佳平衡。本文主要描述了 WPC 和 FRP 制造的加工方法。
下Asteraceae Solanenio Solanacio Mannii(Hook.f。)3 2.38 3下Betulaceae alnus alnus acuminata kunth 3 2.38 2下celastraceae Catha forssk Catha Edulis(Vahl)forssk。ex 3 2.38 2较低的Ericaceae Erica L. Erica Arborea L. 5 3.96 4下埃里卡科·阿古里亚·阿古里亚·阿古里亚·萨利西弗利亚(Comm。ex 2 1.58 1 Lower Euphorbiaceae neoboutonia Neoboutonia Macrocalyx pax 15 11.9 6 Lower Euphorbiaceae Macaranga Kilimandscharica pax 2 1.58 1 Lower Gentiaceae anthoclentist anthoclentist grandiflora Gilg 1 0.79 1 Lower Meliaceae Carapa Carapa Grandiflora Sprague 1 0.79 1较低的Hypercaceae HyperCum HyperCum Revolutum Vahl。4 3.17 3下Meliaceae Lepidatrichilia lepidatricilia volkensii(gürke)10 7.93 4下莫拉西·弗里斯·弗里斯(Moraceae Ficus Tourn)。ex ficus thonningii blume 2 1.58 1降低myrtaceae syzygium gaertn。syzygium guineense(Willd。)DC。3 2.38 2降低番红花桉树桉树Maidenii F.Muell。2 1.58 1下pentaphylacacea balthasaria schliebenii(梅尔奇)3 2.38 2较低的poaceae yushania yushania alpine 1 0.79 1下podocarparteae podocarpus podocarpus latifolius壁。3 2.38 2较低的蛋白质绒毛。Faurea Saligna Harv。24 19.04 11下低渣hagenia hagenia hagenia abyssinica(Bruce)J。F. 30 23.81 12下开胃斑唇裂。f。)1 0.79 1较低的dombeae dombea cav。 Dombea Torrida(J.F.Gmel。) 8 6.34 6中Ericaceae Erica L.Erica Arborea L.155 77.5 20中Ericaceaceae Agauria Agauria salicifolia(Comm。 EX 12 6 7中部超酸HyperCum HyperCum Revolutum Vahl。f。)1 0.79 1较低的dombeae dombea cav。Dombea Torrida(J.F.Gmel。) 8 6.34 6中Ericaceae Erica L.Erica Arborea L.155 77.5 20中Ericaceaceae Agauria Agauria salicifolia(Comm。 EX 12 6 7中部超酸HyperCum HyperCum Revolutum Vahl。Dombea Torrida(J.F.Gmel。)8 6.34 6中Ericaceae Erica L.Erica Arborea L.155 77.5 20中Ericaceaceae Agauria Agauria salicifolia(Comm。EX 12 6 7中部超酸HyperCum HyperCum Revolutum Vahl。17 8.5 9中proteaceae furaa harvFaurea Saligna Harv。14 7 7中间红斑科Hagenia hagenia hagenia hagenia abyssinca(Bruce)J。F. 2 1 2 ag =高度圆周,nos =物种的个体数量,%=物种百分比,np =数量=
可拉伸电子产品可以直接集成到衣服、皮肤和组织等变形系统中,从而实现软机器人、可穿戴电子产品、健康监测、治疗学和人机界面等新应用。然而,实现与人体的无缝集成带来了巨大的挑战,需要开发具有与生物组织匹配的低杨氏模量的功能材料,以避免任何不适或免疫反应。此外,随着电子设备在不同环境中的使用越来越多,电子垃圾的积累和不可持续原材料的使用正成为紧迫的环境挑战。因此,这些设备的设计和制造不仅要考虑高性能,还要考虑其环境可持续性。因此,本论文的重点是通过使用可再生木质功能性木质材料来提高可拉伸电子产品的性能和可持续性。
1 Laboratoire Lasie,UMR-CRS 7356,La Rochelle UniversityÉ,Avenue MichelCréPeau大街,法国La Rochelle,17042; maria.el_hage@univ-lr.fr(M.E.H. ); sarezzo@univ-lr.fr(S.-A.R. ); zoulikha.rezzo@univ-lr.fr(Z.M.-R。)2分析中心等,de recherche,Unitèrecherche Technologies和Valorisation Agro-orimentaire,学院,大学是Saint-Joseph de Beylrouth,Saint-Joseph de Beyrouth,RIAD EL SOLH,RIAD EL SOLH,RIAD EL SOLH,P.O.,P.O. 框17-5208,贝鲁特1104 2020,黎巴嫩; nicolas.louka@usj.edu.lb 3 Laboratoire Lienss,UMR-CRS 7266,Rochelle Universityé,Avenue Michelcrépeeu,17042年,法国La Rochelle; thierry.mauugard@univ-lr.fr(T.M. ); Sophie.sable@univ-Lr.fr (S.S.) 4 Universit é de Technologie de Compare è Gne, Escom, Timr (Integrated Transformations of Renewable Matter), Center de Recherche Royallieu, CS 60319, 60203 COME è GNE CEDEX, France 5 Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. 盒子100 ,黎波里 1300,黎巴嫩; esperance.debs@balamand.edu.lb *通信:m.koubaa@escom.fr;电话。 : +33-3-44-23-88-41); sarezzo@univ-lr.fr(S.-A.R.); zoulikha.rezzo@univ-lr.fr(Z.M.-R。)2分析中心等,de recherche,Unitèrecherche Technologies和Valorisation Agro-orimentaire,学院,大学是Saint-Joseph de Beylrouth,Saint-Joseph de Beyrouth,RIAD EL SOLH,RIAD EL SOLH,RIAD EL SOLH,P.O.,P.O.框17-5208,贝鲁特1104 2020,黎巴嫩; nicolas.louka@usj.edu.lb 3 Laboratoire Lienss,UMR-CRS 7266,Rochelle Universityé,Avenue Michelcrépeeu,17042年,法国La Rochelle; thierry.mauugard@univ-lr.fr(T.M.); Sophie.sable@univ-Lr.fr (S.S.) 4 Universit é de Technologie de Compare è Gne, Escom, Timr (Integrated Transformations of Renewable Matter), Center de Recherche Royallieu, CS 60319, 60203 COME è GNE CEDEX, France 5 Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O.盒子100 ,黎波里 1300,黎巴嫩; esperance.debs@balamand.edu.lb *通信:m.koubaa@escom.fr;电话。: +33-3-44-23-88-41
摘要。2016年,欧盟的固体生物量发电量增加了0.7 mtoe,比2015年增加到10.3 mTOE(119.78 TWH),增长率为7.6%。固体生物量可用于以下:i)加热和冷却和热水用于国内用途,ii)用于工业过程的供暖,iii)发电。与其他可再生能源(RES)不同,例如风能和太阳能光伏(间歇性能源),固体生物质发电厂在需要时提供可调度的能源。因此,供应的安全性也可以提高。此外,使用固体生物量具有显着优势,例如创建与发电厂相关的工作和用于产生能量的原料的收集。在本文中,伊比利亚电力系统对森林生物量发电厂进行了经济评估。根据当前的西班牙电气监管,其中三个经济参数被视为收入(日用市场,运营和投资),为监管使用寿命(25年)开发了一种经济模型。估计生物量发电厂的投资成本已估计为15、30和50 MWE。。在所有情况下都获得了净现值(NPV),内部收益率(IRR)和投资回收期。获得的结果表明,使用446.43 kt年-1的湿生物质的生物质发电厂可能会产生337.5 GWH年-1的净电能-1。考虑到145€MWH -1的电能价格和0.0178€kWh -1的木质生物量,NPV和IRR分别达到165.6 m€和17.63%。