虽然抗生素仍然是治疗微生物感染的主要基础,但负责社区或医院获得感染的微生物正在不断突变并发展出对最佳和最有效的抗生素的抗性[1,2]。微生物耐药性的由此产生的负担包括财务损失,由于治疗失败而导致的延长住院,慢性疾病(癌症和糖尿病等)的风险增加等。),生产率降低和死亡率提高[3]。微生物多抗耐药性和新传染病药物的出现因产品开发管道中有希望的化合物数量少而恶化。因此,迫切需要具有针对抗生素耐药性的显着活性的新型和活性抗菌化合物,或者是针对该疾病的抗生素的补充[4-6]。植物衍生的化合物,因为它们的化学多样性在治疗和预防感染中都起着重要作用[7,8]。这些
使用来自木质纤维素生物量(LCB)的润滑性微生物脂质生物填料生成发酵生物能源(即生物柴油)代表了创新的第二代燃料生产技术。这些脂质主要是细胞内甘油三酸酯,在预处理和LCB的酶水解后,通过发酵中糖的代谢积累。This review investigates the recent advances in the microbial lipid production from LCB, focusing on the factors influencing the lead microbial lipid producers, different pretreatment methods ( i.e., physical, chemical, biological, and combined pretreatment), enzymatic hydrolysis approaches, novel bioprocessing strategies ( i.e., microbes-specific and fermentation model specific), and engineering techniques of the油脂微生物(即遗传和代谢改变)。这项研究表明,按照各种组合预处理方法,将润滑脂酵母掺入系统(称为分离的水解和脂质产生)时,可以合成更高量的脂质。有趣的是,CRISPR被发现是在遗传和代谢上以增加脂质合成的最合适的微生物的最合适方法。该研究还探讨了发酵脂质生产的经济可行策略,应对相关挑战,并概述了未来的方向,包括全面的技术经济和生命周期评估。本评论为LCB提供了对微生物脂质生产的宝贵见解,强调了通过正在进行的研究和开发工作进行大量技术和环境增强的潜力。©2024 Alpha Creation Enterprise CC by 4.0
Figure 8.The working mechanism and sensing performance of the Wood-based Triboelectric Self-powered Sensors (WTSS).(a) Schematic illustration of the working principle of WTSS; (b) Volatile Organic Compounds (VOCs) of WTSS under varying pressures; (c) VOCs of WTSS at different stress levels; (d) Increasing VOCs of WTSS with escalating pressure.Inset: An enlarged view of the low-pressure region; (e) VOCs of WTSS and input pressure at frequencies of 0.5, 1, and 2 Hz [41] 图 8.木质基摩擦电自驱动传感器 (WTSS) 的工作机理和传感性能, (a) WTSS 工作原理示意图; (b) WTSS 在不同压力 下的挥发性有机化合物 (VOCs) ; (c) WTSS 在不同应力水平下的挥发性有机化合物 (VOCs) ; (d) 随着压力增加, WTSS 的挥发性有机化合物 (VOCs) 逐渐增加。插图:低压区域的放大视图; (e) 在 0.5 、 1 和 2Hz 的频率下, WTSS 的挥发性 有机化合物 (VOCs) 与输入压力的关系 [41]
工作:美国水域的排放物要么是从博伊西河或干溪的正常高水位线 (OHWM) 以下清除的木质碎片,要么是为清除碎片而开辟博伊西河或干溪通道所需的材料。排放一般是临时性的。预计每年可清除多达 2,000 立方码的木质碎片,然后暂时堆放在 OHWM 以上或重新用于减少河岸不稳定性和支持渔业栖息地。每年清除的木质碎片量将取决于春季高流量及其侵蚀和运输碎片的能力,以及河岸树木的状况(例如,有掉入水道的风险)。在许可证有效期内,这项工作可能会影响多达 0.5 英亩的森林湿地。
大型木质材料对水质改善的一项重大贡献是它可以捕获细小的沉积物和污染物的能力。当水流过木质结构时,悬浮的沉积物沉降,降低浊度并沉积任何可能粘附在沉积物颗粒上的污染物(例如,磷,重金属)(Ongley等人1992)。 当污染物具有凝聚力和沉降时,其影响水化学的能力会降低,从而使它们对水生生物有害。 此外,木材的多孔性质充当天然过滤器,捕获诸如重金属,多余的养分和有机化合物等污染物。 木质血管在木材内的孔隙率的直径各不相同,有些足够小,可以捕获大肠杆菌和其他潜在有害细菌等微生物(Ramchander等人(Ramchander等) 2021)。1992)。当污染物具有凝聚力和沉降时,其影响水化学的能力会降低,从而使它们对水生生物有害。此外,木材的多孔性质充当天然过滤器,捕获诸如重金属,多余的养分和有机化合物等污染物。木质血管在木材内的孔隙率的直径各不相同,有些足够小,可以捕获大肠杆菌和其他潜在有害细菌等微生物(Ramchander等人(Ramchander等)2021)。
厌氧消化(AD)是将富含碳的生物量(包括木质纤维素废物)转化为能量(富含甲烷的沼气)和增值产品(例如生物肥料)的最先进的技术。富含甲烷的沼气可以通过称为生物甲基化的过程进一步升级为天然气质量。木质纤维素降解。木质纤维素是植物生物量的主要结构成分,但是由于其顽固性,这种天然物质的很大一部分被浪费了。该小组的特征是来自生物质富裕栖息地的微生物群落,目的是进一步使其用于工业应用的木质纤维素分解能力。土壤微生物组。土壤微生物组重生主要是细菌,古细菌,病毒,真菌,生物和其他小真核生物,例如硅藻。土壤微生物通过分解土壤有机物并转化重要的养分来确定农业生态系统的生产率,从而在碳和养分循环中起关键作用。此外,尽管它们在粮食安全和气候变化中的重要性,但大多数土壤微生物在很大程度上都没有表征。废水处理和去除污染物,重点是生物学过程(例如有氧颗粒状污泥反应器)或通过吸附或膜操作去除顽固化合物。
厌氧消化(AD)是将富含碳的生物量(包括木质纤维素废物)转化为能量(富含甲烷的沼气)和增值产品(例如生物肥料)的最先进的技术。富含甲烷的沼气可以通过称为生物甲基化的过程进一步升级为天然气质量。木质纤维素降解。木质纤维素是植物生物量的主要结构成分,但是由于其顽固性,这种天然物质的很大一部分被浪费了。该小组的特征是来自生物质富裕栖息地的微生物群落,目的是进一步使其用于工业应用的木质纤维素分解能力。土壤微生物组。土壤微生物组重生主要是细菌,古细菌,病毒,真菌,生物和其他小真核生物,例如硅藻。土壤微生物通过分解土壤有机物并转化重要的养分来确定农业生态系统的生产率,从而在碳和养分循环中起关键作用。此外,尽管它们在粮食安全和气候变化中的重要性,但大多数土壤微生物在很大程度上都没有表征。废水处理和去除污染物,重点是生物学过程(例如有氧颗粒状污泥反应器)或通过吸附或膜操作去除顽固化合物。
厌氧消化(AD)是将富含碳的生物量(包括木质纤维素废物)转化为能量(富含甲烷的沼气)和增值产品(例如生物肥料)的最先进的技术。富含甲烷的沼气可以通过称为生物甲基化的过程进一步升级为天然气质量。木质纤维素降解。木质纤维素是植物生物量的主要结构成分,但是由于其顽固性,这种天然物质的很大一部分被浪费了。该小组的特征是来自生物质富裕栖息地的微生物群落,目的是进一步使其用于工业应用的木质纤维素分解能力。土壤微生物组。土壤微生物组重生主要是细菌,古细菌,病毒,真菌,生物和其他小真核生物,例如硅藻。土壤微生物通过分解土壤有机物并转化重要的养分来确定农业生态系统的生产率,从而在碳和养分循环中起关键作用。此外,尽管它们在粮食安全和气候变化中的重要性,但大多数土壤微生物在很大程度上都没有表征。废水处理和去除污染物,重点是生物学过程(例如有氧颗粒状污泥反应器)或通过吸附或膜操作去除顽固化合物。
我们的木质素过滤介质旨在减少您的产品UR木质素过滤器介质旨在减少您的产品碳足迹。碳足迹。与传统的过滤媒体不同,我们的纤维素与传统的过滤介质不同,我们的纤维素过滤器介质充满了环保木质素的树脂的饱和,过滤介质充满了基于环保的基于木质素的树脂的饱和,可确保您的过滤器元素确保您的最佳性能,确保您的过滤器元素能够提供最佳性能,同时又能达到更高的维持材料,同时又可以维持较高的材料解决方案。更可持续的过滤解决方案。