摘要:木质素本质上是第二大的聚合物,在木质纤维素生物膜中生物量分馏期间也广泛产生。目前,尽管它代表了芳香剂的最丰富来源,但目前,大多数技术木质素都被燃烧而成,因此它是产生增值化合物的有前途的原料。木质素在组成中是异质的,并且是降解的顽固性,这种木质蛋白极大地阻碍了其使用。值得注意的是,微生物已经进化了特定的酶和专门的代谢途径,以降解该聚合物并代谢其各种芳族成分。近年来,已经设计了新的途径,可以建立能够有效地将木质素降解产物汇合到几个代谢中间体的工程微生物细胞工厂,代表合成各种有价值分子的合成起点。本综述重点介绍了基于系统代谢工程研究的最新成功案例(在实验室/飞行员量表上),旨在产生增值和特种化学品,非常强调CIS -CIS -ruconic Acid的产生,CIS -Muconic Acid是公认的塑料材料合成工业价值的基础。该全球废物流的升级承诺将解决可持续的产品组合,当将解决与流程规模相关的经济问题时,它将成为工业现实。
虽然抗生素仍然是治疗微生物感染的主要基础,但负责社区或医院获得感染的微生物正在不断突变并发展出对最佳和最有效的抗生素的抗性[1,2]。微生物耐药性的由此产生的负担包括财务损失,由于治疗失败而导致的延长住院,慢性疾病(癌症和糖尿病等)的风险增加等。),生产率降低和死亡率提高[3]。微生物多抗耐药性和新传染病药物的出现因产品开发管道中有希望的化合物数量少而恶化。因此,迫切需要具有针对抗生素耐药性的显着活性的新型和活性抗菌化合物,或者是针对该疾病的抗生素的补充[4-6]。植物衍生的化合物,因为它们的化学多样性在治疗和预防感染中都起着重要作用[7,8]。这些
张海泉 1,# 李淑良 2,# 杭欢成 3,# 王仁娟 1 程长静 3 Kuzin Victor Fedorovich 4 麦贤民 2,* 摘要 木材具有强度高、可再生、隔热/降噪/调湿性能好等特点,是一种理想的绿色建筑材料。然而,木材中丰富的营养成分使木材容易受到微生物的侵蚀,限制了其在建筑领域的应用。本文报道了一种新颖的防霉技术,该技术将二氧化钛 (Ti 0.87 O 2 ) 纳米片自发填充到木材材料的开放孔隙中。基于 Ti 0.87 O 2 纳米片的高透光率,所制备的复合木材保留了木材原有的纹理和颜色。纤维素/木质素的羟基与二氧化钛的Ti 4+之间存在多个配位键,增强了木质材料与Ti 0.87 O 2 纳米片界面的稳定性,Ti 0.87 O 2 填充介质切断了氧气、水、营养物质及微生物的传输路径,使得复合木材具有良好的抗霉性,因此该改性技术使得木材在结构、装饰领域具有巨大的应用潜力。
联合国可持续发展目标 (SDG) 包括提供负担得起的清洁能源(目标 7),以实现全民和平与繁荣(可持续发展目标,2022 年)。其他可持续发展目标“可持续城市和社区”(目标 11)、“负责任的消费和生产”(目标 12)和“气候行动”(目标 13)也要求寻找可持续原料和清洁技术来生产可再生燃料。木质纤维素生物质是被研究作为生物燃料生产来源的突出和新兴原料之一。自然界中木质纤维素生物质的全球年产量估计为 1815 亿吨。其中,据说目前仅利用了 82 亿吨生物质,其中 70 亿吨来自森林、农业和草类,12 亿吨来自农业残留物(Ashokkumar 等人,2022 年)。这种生物质的传统用途是烹饪、取暖、建筑材料以及纸张、纸板和纺织品的生产。随着技术和生物质管理的进步,这种有价值的木质纤维素生物质可用于生产可再生生物燃料。此外,纤维素、半纤维素和木质素材料可以用于其他有用的工业生物产品和生物化学品(Ashokkumar 等人,2022 年)。木质纤维素生物质由木质素、纤维素和半纤维素组成,全球储量丰富。纤维素是自然界中最丰富的有机物质,其次是木质素。纤维素、半纤维素和木质素的百分比组成在软木、硬木、农业残留物和草类等木质纤维素材料中有所不同。木质纤维素生物质来自各种原料,如糖料作物、淀粉作物、农业残留物、草本生物质、木质生物质、油籽和微藻 ( Yuan et al., 2018 )。木质纤维素生物质的纤维素和半纤维素成分中存在的碳水化合物被认为适合生产生物燃料。然而,木质纤维素材料难以转化,因为木质纤维素生物质中的木质素会抑制生物质中碳水化合物的糖化和水解,从而给生物燃料转化带来挑战。将木质纤维素生物质中的聚合物转化为单体的主要挑战在于其结构中的强共价键和非共价键、结晶度和木质素结垢,需要克服这些才能将其用作生物燃料生产材料(Preethi 等人,2021 年)。木质纤维素材料的顽固性可以通过预处理步骤来克服,这些步骤会扰乱生物质中的木质素成分。此后,可以对纤维素和半纤维素进行酶水解。预处理方法可以是物理的、化学的、物理化学的或生物的。预处理导致木质纤维素材料碎裂,进一步增加其表面积和溶解度,并降低生物质中纤维素和木质素含量的结晶度(Hoang 等人,2021 年;Kumar 等人,2022 年)。原料选择、原料混合、高效预处理
摘要 具有木质素解聚、分解代谢或两者兼有能力的新型细菌分离物可能与木质纤维素生物燃料应用有关。在本研究中,我们旨在识别能够解决微生物介导的生物技术所面临的经济挑战(例如需要曝气和混合)的厌氧细菌。利用从温带森林土壤中接种并在缺氧条件下以有机溶剂木质素作为唯一碳源进行富集的菌体,我们成功分离出一种新型细菌,命名为 159R。根据 16S rRNA 基因,该分离物属于 Bruguierivoracaceae 科的 Sodalis 属。全基因组测序显示基因组大小为 6.38 Mbp,GC 含量为 55 mol%。为了确定 159R 的系统发育位置,使用 (i) 其最亲属的 16S rRNA 基因、(ii) 100 个基因的多位点序列分析 (MLSA)、(iii) 49 个直系同源群 (COG) 结构域簇和 (iv) 400 个保守蛋白质重建了它的系统发育。分离株 159R 与枯木相关的 Sodalis 行会密切相关,而与采采蝇和其他昆虫内共生体行会关系较弱。估计的基于基因组序列的数字 DNA-DNA 杂交 (dDDH)、基因组保守蛋白质百分比 (POCP) 以及 159R 与 Sodalis 进化枝物种之间的比对分析进一步支持分离株 159R 属于 Sodalis 属的一部分和 Sodalis ligni 的一个菌株。我们建议将之命名为 Sodalis ligni str。 159R (=DSM 110549 = ATCC TSD-177)。
©2019。此手稿版本可在CC-BY-NC-ND 4.0许可证https://creativecommons.org/licenses/by-nc-nc-nd/4.0/下提供。
9 “木质生物质用于发电和供热”,查塔姆研究所,2017 年 2 月 23 日 10 “数百万吨官方并未记录的碳排放量”,纽约客,2021 年 12 月 8 日 11 “欧洲实现了气候目标。但它的碳燃烧减少了吗?”纽约时报,2022 年 1 月 20 日 12 “排放交易体系:通过彻底改革二氧化碳核算规则来阻止生物质对气候的负面影响”,欧洲科学院科学顾问委员会,2020 年 8 月,以及“用木材替代煤炭是否会降低二氧化碳排放?木质生物能源的动态生命周期分析”,环境研究快报,2018 年 1 月 13 “欧洲燃烧一种有争议的‘可再生’能源:来自美国的树木”,国家地理,2021 年 11 月 11 日,“用木材替代煤炭是否会降低二氧化碳排放?木质生物能源的动态生命周期分析”,环境研究快报,2018 年 1 月,以及“科学家致欧盟议会关于森林生物质的信”,2018 年 1 月 14 日 14 “关于使用森林生产生物能源的信”(500 名科学家写给世界领导人的信),2021 年 2 月 15 “欧盟和英国燃烧美国木质生物质产生的温室气体排放”,查塔姆研究所,2021 年 10 月
已确定有 10 亿吨生物质原料可用于生产可再生生物燃料和生物化学品。这是为运输部门提供轻型、重型和航空燃料能源的关键碳原料之一。木质纤维素原料的利用有助于减少石油进口需求、促进农业发展、创造就业机会和减少温室气体排放,从而提高能源安全。然而,迄今为止,运营挑战阻碍了大批量木质纤维素燃料和化学品的工业生产。因此,美国能源部已投入大量研究资金,以了解和提高先锋纤维素生物炼油厂的运营可靠性。本文介绍了从淀粉乙醇工艺中采用的木质纤维素转化技术。所开发的工艺最终成功演示了使用多种原料(包括柳枝稷、能源高粱和两种玉米粒纤维)进行的 1,000 小时综合运行。本文重点介绍了工艺开发,解决了困扰纤维素糖领域许多问题(并将继续困扰这些问题),例如生物质进料到设备中、高灰分含量、多样化的副产品价值等。
摘要 木质素是位于细胞壁的芳香族聚合物,可为木质组织提供强度和疏水性。木质素单体通过苯丙烷途径合成,其中咖啡酰莽草酸酯酶 (CSE) 将咖啡酰莽草酸转化为咖啡酸。在这里,我们探讨了两种 CSE 同源物在杨树 (Populus tremula 9 P. alba) 中的作用。报告系显示 CSE1 和 CSE2 启动子赋予的表达相似。CRISPR-Cas9 产生的 cse1 和 cse2 单突变体具有野生型木质素水平。尽管如此,CSE1 和 CSE2 并非完全冗余,因为两个单突变体都积累了咖啡酰莽草酸。相比之下,cse1 cse2 双突变体的木质素减少了 35%,并导致相关的生长损失。降低木质素含量意味着在糖化程度有限的情况下,纤维素转化为葡萄糖的转化率增加了四倍。双突变体的酚类分析显示,代谢变化很大,除了咖啡酰莽草酸外,还包括对香豆酰、5-羟基阿魏酰、阿魏酰和芥子酰莽草酸的积累。这表明 CSE 具有广泛的底物特异性,这已通过体外酶动力学得到证实。总之,我们的结果表明,在羟基肉桂酰-莽草酸水平上,苯丙烷类途径中存在一条替代途径,并表明 CSE 是改善生物精炼植物的有希望的目标。
