摘要:本文测试了一种合成绿色蜡抑制剂的新颖概念。将四个技术木质素与氯酰氯化物反应,以产生酯化的C18酯化木质素。调查了反应对木质素分子量,特征FTIR光谱和热降解的影响。此外,蜡抑制测试是通过流变学对模型蜡油进行的。嫁接反应增加了木质素的质量平均分子量,在某些情况下也增加了多分散性指数。FTIR分析证实,随着O -H伸展带的减少,酯化反应的成功,而C -H和C伸展带显着增加。在170°C以上的温度下进一步发现了热降解,表明木质素蜡抑制剂的热稳定性足够稳定,足以产生原油。对蜡质凝胶的影响变化了,表明低分子量蜡比高分子高的蜡受益更多。添加木质素后,发现了高达6°C的凝胶点。蜡类型后,蜡浓度,木质素浓度和木质素类型变化了,发现C18酯化的牛皮纸木质素表现出最有益的作用。粘度分析的结果与风化胶凝点的观察结果一致。交叉极化显微镜用于绘制对蜡晶体形态的影响。仅在一种酯化的牛皮纸木质素的情况下发现了差异,后者产生较小,更细腻的蜡晶体。总而言之,通过将技术木质素与氯乙烯氯化物反应合成新的蜡抑制剂。该木质素在某些测试的病例中显示出蜡抑制剂的活性。在这一点上,吊坠烷基链的长度(C18)可能是限制因素。但是,本研究归因于新概念合成绿色蜡抑制剂的潜力。
摘要:木质素本质上是第二大的聚合物,在木质纤维素生物膜中生物量分馏期间也广泛产生。目前,尽管它代表了芳香剂的最丰富来源,但目前,大多数技术木质素都被燃烧而成,因此它是产生增值化合物的有前途的原料。木质素在组成中是异质的,并且是降解的顽固性,这种木质蛋白极大地阻碍了其使用。值得注意的是,微生物已经进化了特定的酶和专门的代谢途径,以降解该聚合物并代谢其各种芳族成分。近年来,已经设计了新的途径,可以建立能够有效地将木质素降解产物汇合到几个代谢中间体的工程微生物细胞工厂,代表合成各种有价值分子的合成起点。本综述重点介绍了基于系统代谢工程研究的最新成功案例(在实验室/飞行员量表上),旨在产生增值和特种化学品,非常强调CIS -CIS -ruconic Acid的产生,CIS -Muconic Acid是公认的塑料材料合成工业价值的基础。该全球废物流的升级承诺将解决可持续的产品组合,当将解决与流程规模相关的经济问题时,它将成为工业现实。
摘要:舌头疾病的诊断是基于对各种舌头特征的观察,包括颜色,形状,质地和水分,这些特征表明患者的健康状况。舌色是一种这样的特征,在识别疾病和疾病进展水平方面起着至关重要的功能。随着计算机视觉系统的发展,尤其是在人工智能领域,在获取,处理和分类舌头图像方面取得了重要进展。本研究提出了一个新的成像系统,以分析和提取不同颜色饱和的舌色特征,并在五种颜色空间模型(RGB,YCBCR,HSV,LAB和YIQ)的不同光条件下。使用六个机器学习算法(即幼稚的贝叶斯(NB),支持向量机(SVM),K-Neareart Neight(KNN),DICKERT(NB),决策树(DTS),森林(DTS),森林(dts),森林(dts),fortive(dts fornes forter(dts forter)(dts),训练了5260个图像(红色,黄色,绿色,蓝色,灰色,白色,白色和粉红色)。在任何照明条件下颜色。 从机器学习算法获得的结果说明,XGBoost的精度最高,为98.71%,而NB算法的精度最低,为91.43%。 基于这些获得的结果,选择了XGBoost算法作为所提出的成像系统的分类器,并与图形用户界面相关联,以实时预测舌色及其相关疾病。 因此,该提出的成像系统为未来的护理卫生系统内的舌头诊断开辟了大门。训练了5260个图像(红色,黄色,绿色,蓝色,灰色,白色,白色和粉红色)。在任何照明条件下颜色。从机器学习算法获得的结果说明,XGBoost的精度最高,为98.71%,而NB算法的精度最低,为91.43%。基于这些获得的结果,选择了XGBoost算法作为所提出的成像系统的分类器,并与图形用户界面相关联,以实时预测舌色及其相关疾病。因此,该提出的成像系统为未来的护理卫生系统内的舌头诊断开辟了大门。
锂离子电池属于金属电池(MIBS)类别,它们在智能存储设备中经历了广泛的开发。1这些电池的性能和实际应用通常取决于所使用的金属离子的特性(表1)。为例,钠是通过单电子转移(如锂)运行的,并且具有低电化学电位(-2.71 V与标准氢电极,SHE),该电位仅比锂的氢电极,SHE)。但是,鉴于与锂相比,钠的丰度和较低的成本较低,基于钠的可充电电池可以更好地满足对大型电气储能系统的需求。4此外,与LIB相比,使用多价离子(例如Zn 2+,Mg 2+,Al 3+)的电池可以实现更高的体积能力和较低的成本,因为它们能够参与多个电子转移氧化还原反应和较高的丰度。1,5
树对我们的环境至关重要,因为它们支持生物多样性,碳固存,氧气产生和许多其他环境功能。树木生产的木质纤维素生物量也是可以替代化石燃料衍生产品的绿色产品的可再生来源。最近,它们的重要性被认为是将大气二氧化碳吸收到有机生物量中的碳汇。气候变化将使树木暴露于各种环境压力和病原体上,并且由于其无柄性质,树木依赖遗传多样性来生存和适应。例如,对病原体的抗性自然变化使树木可以将重要的抗性因子传递给其后代并促进适应。全基因组方法来阐明重要树状特征的自然变化的分子机制,这些方法可用于改善森林原料。
https://doi.org/10.26434/chemrxiv-2023-klv3z orcid:https://orcid.org/000000-0002-2637-9974 content contem content content content notect content contem consemrxiv note contem-chemrxiv consemrxiv note content consemrxiv note content。许可证:CC BY-NC-ND 4.0
1.4.1 木质素生物合成 ................................................................................ 26 1.4.2 木质素生物合成基因的转录调控 .......................................................... 33 1.4.3 木质素聚合 .......................................................................... 35 1.4.4 木质素的抗逆性 ........................................................................ 36 1.4.5 木质素在非生物胁迫中的作用 ...................................................... 38 1.4.6. 木质素在生物胁迫中的作用 ...................................................... 39 1.5. 木材腐朽真菌 ............................................................................................. 41 2. 研究目标 ............................................................................................................. 44 3. 材料与方法 ............................................................................................................. 45
木质素磺酸盐-赖氨酸水凝胶用于吸附重金属离子。《农业与食品化学杂志》,2020 年,68(10),3050-3060。[30] Orszulik S T。石油工业中的环境技术。荷兰:Springer,2008 年。[31] Klapiszewski Ł、Zietek J、Ciesielczyk F、Siiwnska- Stefanska K、Jesionowski T。与木质素磺酸钙结合的硅酸镁:原位合成和综合物理化学评价。矿物加工的物理化学问题,2018 年,54,793-802 [32] Parsetyo EN、Kudanga T、Østergaard L、Rencoret J、