摘要:使用遗传算法(GA)的优化是几个科学学科的众所周知的策略。交叉是遗传算法的必不可少的操作员。这是为该操作数开发可持续形式的研究领域。在这项工作中,提出了一个新的跨界操作数。该操作数取决于对染色体的描述,并为父母的等位基因带来了新的结构。建议每个等位基因都有两种态度,一种态度与另一种态度不同,两者都与等位基因相称。因此,如果一种态度是好的,则另一种态度应该不好。这适用于许多包含钦佩参数和未加工参数的系统。拟议的跨界将改善所需的态度,并抑制不希望的态度。可以在两个阶段实现所提出的跨界:第一阶段是一种父母的态度的一种交配方法,以提高一种态度,以牺牲另一种态度。第二阶段是在不同父母之间交配的第一个改进阶段之后。因此,将采用两个并发的改进步骤。系统的仿真实验显示出拟合函数的改善。所提出的跨界车可能对不同的领域有所帮助,尤其是优化路由算法和网络协议,该应用程序已在这项工作中被测试为案例研究。
目前,对大型自由锻件的需求有所下降。新建大型锻造车间设施的新投资取决于当前的订单。本文调查了世界和捷克共和国选定锻造厂的状况。用于制造自由锻件的锻造厂的产品范围很广,包括形状和尺寸、材料和客户范围。最多是单件生产或短期生产。大多数锻件以加工和未加工状态面向外部客户。只有一小部分锻件,我们可以说对它们的兴趣是稳定的。其中大部分的销售在很长一段时间内都会发生变化。作为这一事实的典型例子,我们可以提到核电站的锻件。30-40 年前,我们大多数开式模锻件制造商的产能都因这些锻件而超负荷,随后人们对它们的兴趣几乎降为零,但最近兴趣又重新增加。造船业和某些其他锻造集团的锻件需求也出现大幅波动。1.总体发展趋势 就机械而言,只保留了用于较小锻件的动力锤,从大约 1 吨以上开始,它们被小型压力机取代。此外,甚至用于大截面棒材和棒材的径向锻造机的数量也在增加。在过去的 10 年里,至少建造了 30 台压力大于 100 MN 的锻压机,这通常与核能领域的繁荣预期有关。即使在最大的锻压机中,锻造操作机也已变得很常见。在
2022年9月1日,需要提供信息公告。051-22儿童营养服务至:教育服务区主管学区学区学区业务经理学区食品服务私立学校私立学校来自:Chris Reykdal,公共教育校长Chris Reykdal Re:其他供应链援助援助儿童义工计划的供应链援助资金联系:Hydie Kidd - Hydie Kidd - Fifiscal Nuthrition Services,Fifcal Nutrition Services 360-62-62-287-287, hydie.kidd@k12.wa.us目的/背景美国农业部(USDA)最近在儿童营养计划中批准了联邦资金用于供应链援助(SCA)。这笔资金是对购买和接收USDA用餐计划经历的食物中前所未有的挑战的回应。华盛顿州在第一轮SCA基金中获得了18,223,217美元,最近在第二轮资金中获得了$ 17,183,276。SCA资金将提供2022-23学年的全国学校午餐计划(NSLP)的地方教育机构(LEAS)。SCA资金必须存入非营利性学校食品服务帐户,必须用于购买国内,未加工或最少加工的食品。资金必须在2023年9月30日之前完全义务。此资金的援助上市编号(ALN)为10.555。供应链援助资金付款详细信息
图1。T(14; 19)(Q11.2; Q13.3)在T8ML-1中的基因组特征。 (a)光谱核分型(天空)描绘了来自T8ML-1核型的G带,未加工和伪色彩的染色体图像,显示了多个PLE改变。 红色和绿色箭头分别表示DER(14)和DER(19)易位伙伴;白色箭头显示非参与者断点。 天空揭示了与持续存在的患者衍生的亚克隆一致的异质但稳定的克隆下结构。 (b)G频段显示了14Q11.2和19Q13.3的T(14; 19)的断点。 (c/d)14q11.2(c)和19q13.3(d)的Cytoscan图显示了基因组拷贝数图。 图插图显示了使用Tilepath克隆以及映射BAC(C)和Fosmid(D)克隆的映射数据的荧光原位杂交(FISH)。 请注意基于鱼图像的断点分配,描绘了14q11.2和19q13.3分别位于Tra@ dowr@下游增强子和下游短形式PVRL2的断点。 差异信号强度符合焦点扩增,如两个基因座的拷贝数图所示。 如前所述,进行了鱼类和基因组阵列。 使用HISKY系统(Applied Spectral Imaging,Edingen,Germany)捕获了细胞遗传学图像,该系统配置为AxioImager D1 Micro-Scope(Zeiss,Jena,Germany)。 如参考文献中所述,Siebert Lab友好地捐赠了克隆。 10,或从美国加利福尼亚州奥克兰市的BACPAC资源,儿童医院购买,并由Nick Translation用Dutp Fluors Dy495(绿色),DY590(RED)和DY547(黄色)(黄色)(黄色)购买。T(14; 19)(Q11.2; Q13.3)在T8ML-1中的基因组特征。(a)光谱核分型(天空)描绘了来自T8ML-1核型的G带,未加工和伪色彩的染色体图像,显示了多个PLE改变。红色和绿色箭头分别表示DER(14)和DER(19)易位伙伴;白色箭头显示非参与者断点。天空揭示了与持续存在的患者衍生的亚克隆一致的异质但稳定的克隆下结构。(b)G频段显示了14Q11.2和19Q13.3的T(14; 19)的断点。(c/d)14q11.2(c)和19q13.3(d)的Cytoscan图显示了基因组拷贝数图。图插图显示了使用Tilepath克隆以及映射BAC(C)和Fosmid(D)克隆的映射数据的荧光原位杂交(FISH)。请注意基于鱼图像的断点分配,描绘了14q11.2和19q13.3分别位于Tra@ dowr@下游增强子和下游短形式PVRL2的断点。差异信号强度符合焦点扩增,如两个基因座的拷贝数图所示。鱼类和基因组阵列。使用HISKY系统(Applied Spectral Imaging,Edingen,Germany)捕获了细胞遗传学图像,该系统配置为AxioImager D1 Micro-Scope(Zeiss,Jena,Germany)。如参考文献中所述,Siebert Lab友好地捐赠了克隆。10,或从美国加利福尼亚州奥克兰市的BACPAC资源,儿童医院购买,并由Nick Translation用Dutp Fluors Dy495(绿色),DY590(RED)和DY547(黄色)(黄色)(黄色)购买。基因组阵列数据由Cytoscan高密度基因组阵列(Affymetrix,Thermo Fischer,Darmstadt,Germany)提供。
缩写:Ψ,假基因;ceRNA,竞争内源性RNA;MRE,微小RNA反应元件;miRNA,微小RNA;TSG,肿瘤抑制基因;mRNA,信使RNA;PP,加工假基因;UP,未加工假基因;UPG,单一假基因,RT,逆转录转座;LINE,长散在核元件;siRNA,短干扰RNA;circRNA,环状RNA;AD,阿尔茨海默病;FTH1,铁蛋白重链;;PTENP1,PTENP1假基因;HMGEC,人乳腺上皮细胞;CRDP,环状RNA衍生的假基因;;HMGA1P,高迁移率族AT-Hook 1假基因;RBP,RNA结合蛋白;;lncRNA,长非编码RNA;CRC,染色质重塑复合物;ERK,细胞外信号调节激酶; BRAF,B-Raf原癌基因;PI3K,磷酸肌醇3-激酶;AKT,丝氨酸/苏氨酸激酶;MAPK,丝裂原活化蛋白激酶;qRT-PCR,定量逆转录聚合酶链反应;FISH,荧光原位杂交;ceRNA假说,竞争性内源性RNA假说;PTPN11,蛋白酪氨酸磷酸酶,非受体型11;NDs,神经退行性疾病;EGFR,上皮生长因子受体;TNF,肿瘤坏死因子;早期生长反应蛋白1(EGR1),HMGA,高迁移率族at-hook 1基因;PMOM,精准医疗肿瘤学市场;scRNA-seq,单细胞RNA测序;ISH,原位杂交;RNAi,RNA干扰;LNP,脂质纳米颗粒; BCL,B 细胞淋巴瘤;AI,人工智能;IP,免疫沉淀;RIP,RNA 免疫沉淀;HRISH,高分辨率原位杂交
背景:肥胖会对多个身体系统产生负面影响,包括中枢神经系统。回顾性研究通过神经影像学估计实际年龄发现肥胖患者的大脑衰老加速,但尚不清楚生活方式干预后减重对这一估计有何影响。方法:在一项对饮食干预随机对照试验多酚未加工研究 (DIRECT-PLUS) 的 102 名参与者的子研究中,我们测试了 18 个月生活方式干预后减重对基于磁共振成像 (MRI) 评估的静息态功能连接 (RSFC) 预测大脑年龄的影响。我们进一步研究了多种健康因素(包括人体测量、血液生物标志物和脂肪沉积)的动态变化如何解释大脑年龄的变化。结果:为了建立我们的方法,我们首先证明我们的模型可以成功地根据三个队列(n=291;358;102)的 RSFC 预测实际年龄。然后我们发现,在 DIRECT-PLUS 参与者中,体重减轻 1% 会导致大脑年龄衰减 8.9 个月。经过 18 个月的干预后,大脑年龄的衰减与肝脏生物标志物的改善、肝脏脂肪的减少以及内脏和深层皮下脂肪组织的减少显着相关。最后,我们表明,减少加工食品、糖果和饮料的消费与大脑年龄的衰减有关。结论:生活方式干预后成功减肥可能对大脑衰老的轨迹产生有益的影响。资金:德国研究基金会 (DFG)、德国研究基金会 - 项目编号 209933838 - SFB 1052;B11、以色列卫生部拨款 87472511(给 I Shai);以色列科技部拨款 3-13604(给 I Shai);以及加州核桃委员会 09933838 SFB 105(给 I Shai)。
背景:脂肪嫁接是重建武术中的高度用途,但具有不可预测的保留率和结果。与单独使用离心料的未经处理的脂肪酸或脂肪移植相比,该系统综述的主要概述是评估次级机械加工的脂肪酸是否有利地增强了脂肪移植物的血管生成潜力。次要结果是在比较上述组时评估围绕移植物的证据并改善结果。方法:在2022年2月之前,对MEDLINE,EMBASE和COCHRANE CENTRAL登记册进行了搜索。包括所有人类和动物研究,其中包括未加工,离心,次级机械碎片(SMF)或次级机械破坏(SMD)脂肪移植物之间的交叉比较。结果:包括31个全文。血管生成潜力。通过荧光激活的细胞分析(FACS)分析来定量间充质干细胞,血管血管干细胞和内皮祖细胞的细胞组成。脂肪移植的量保留率和有助于伤口愈合的脂肪移植率。尽管在某些研究的来源中,具有行业资助的研究的存在和方法学数据的报告不足,但数据显示,SMF移植物包含富集的周细胞种群,其血管腔内皮生长因子(VEGF)分泌增加。需要进一步的临床研究来评估人类研究中的潜在差异。动物研究表明,与离心移植物相比,SMD移植物可能会增加脂肪移植的率和伤口闭合率。但是,临床研究尚未显示出相似的结果。结论:在这项系统的综述中,我们能够得出结论,现有文献表明机械处理脂肪,无论是通过碎片或破坏,通过增强血管生长生长因子和相关的血管祖细胞水平来提高血管生成潜力。虽然体内动物研究稀缺,但综述的发现表明,次级机械脂肪会增强脂肪移植的保留率,并可以帮助伤口愈合。
沙特阿拉伯大约 70% 的消费需求依赖进口食品和农产品。奶牛场和家禽场完全依赖主要植物生物技术生产国生产的饲料玉米、豆粕和大豆。2001 年,沙特阿拉伯正式允许进口转基因植物产品和微生物食品,但必须满足两个条件:产品在原产国获准供人类或动物食用,且如果转基因含量高于 1%,则产品必须贴有生物技术标签。2011 年,海湾标准化组织 (GSO) 发布了两项主要生物技术法规,即 GSO 2141/2011(转基因未加工农产品通用要求)和 GSO 2142/2011(转基因加工农产品通用要求)。自 2011 年以来,他们一直没有修订植物生物技术法规,预计近期也不会有任何变化。这两项生物技术法规在 GSO 成员国(沙特阿拉伯、巴林、科威特、阿曼、卡塔尔、也门和阿联酋)实施。这两项 GSO 法规包含与沙特阿拉伯自 2001 年以来一直在实施的生物技术标签条件类似的条件。美国历来是沙特阿拉伯王国玉米、玉米油、干酒糟及可溶物 (DDGS)、大豆、豆粕和大豆油的重要供应国。2023 年,沙特阿拉伯进口了 273 万公吨 (MMT) 饲料玉米(13% 来自美国);38,614 公吨 DDGS(全部来自美国);52,858 公吨玉米油(59% 来自美国);518,365 公吨大豆(29% 来自美国);803,075 公吨豆粕(美国市场份额为 9%);以及 12,671 公吨大豆油(10% 来自美国)。尽管沙特阿拉伯已出台允许进口生物技术种子的法规,但沙特农民并未表现出进口或种植生物技术种子的兴趣。沙特阿拉伯没有单独的微生物生物技术政策,它将微生物生物技术视为农业生物技术的重要组成部分。因此,所有适用于农业生物技术生产和消费的法规和标准都适用于使用微生物生物技术生产的产品。沙特阿拉伯和 GSO 成员国允许进口转基因种子,但出于宗教原因(清真问题),禁止所有成员国进口转基因动物、鸟类、鱼类及其产品。目前,尚未就撤销禁令进行讨论。有关沙特阿拉伯食品和农业进口法规的更多详细信息,可参阅我们的年度食品和农业进口法规和标准 (FAIRS) 国家报告,链接如下。
– – = 不适用。– = 数据不可用。1 包括炼油厂和油库或运往油库和管道的国内和海关清关外国原油库存。2 包括根据外国或商业储存协议持有的非美国库存。3 不包括位于“东北取暖油储备”、“东北地区精炼石油产品储备”和“纽约州战略燃料储备计划”中的库存。有关详细信息,请参阅附录 C。4 2020 年 4 月 10 日之前,这包括终端持有的丙烯库存。5 包括 NGPL 和 LRG(丙烷/丙烯除外)、煤油、沥青和道路用油的每周数据;以及基于月度数据的次要产品估计库存。6 国内原油产量包括租赁凝析油,使用美国本土 48 个州的短期预测和阿拉斯加最新的可用产量估计值进行估算。对于美国和美国本土 48 个州,每周原油产量估计值四舍五入到最接近的 1,000 桶/天 (b/d)。此更改是从四舍五入到最接近的 100,000 b/d。有关更多详细信息,请参阅附录 B 中的“通过模型获得的数据”。7 根据 EIA-806 报告,阿拉斯加每周 NGL 总产量。8 最新“石油供应月报”中天然汽油(不包括凝析油)和未加工油转移到原油供应量,加上每周凝析油产量减去每周凝析油库存变化量,然后将总数乘以 -1。9 以前称为未计入原油,这是一个平衡项目。从 2023 年 11 月 15 日的出版物开始,原油调整包括转移到原油供应量(第 4 行)。有关进一步解释,请参阅词汇表。 10 2010 年 6 月 4 日之前称为天然气液产量,包括对燃料乙醇和车用汽油混合成分的调整。11 包括变性剂(例如戊烷加)和其他可再生能源(例如生物柴油)。2020 年 4 月 10 日之前,包括其他含氧化合物(例如 ETBE 和 MTBE)。12 包括成品石油、半成品油、汽油混合成分、燃料乙醇、NGPL 和 LRG。13 包括基于月度数据的次要产品库存变化估计值。14 包括对氢气和其他碳氢化合物产量的月度调整。15 从产品供应中减去并转入原油供应的 NGL 和半成品油总桶数(第 4 行)。 16 总产品供应量 = 炼油厂的原油输入量(第 17 行)+ 其他供应产量(第 18 行)+ 净产品进口量(第 24 行)- 库存变化量(第 27 行)+ 调整量(第 28 行)+ 原油供应转移量(第 29 行)。17 参见表 2,脚注 3。18 丙烷产品供应量的计算不包括阿拉斯加生产的、已转移到原油中的丙烷(第 5 行)。19 其他石油产品供应量 = 总产品供应量(第 30 行)减去成品汽油(第 31 行)、煤油型喷气燃料(第 32 行)、馏分燃料油(第 33 行)、残渣燃料油(第 34 行)和丙烷/丙烯(第 35 行)的供应量。注:部分数据为估算值(请参阅来源以进行澄清)。由于独立四舍五入,数据可能未加总。差异和百分比变化使用未四舍五入的数字计算。数据来源:参见第 29 页。