执行摘要 航空业为世界各地的商业、创造就业机会、经济发展、个人旅行和休闲以及执法和应急响应提供了机会。美国的领导地位对于这些机会和全球航空界至关重要。美国还必须对不断变化和扩大的航空运输需求做出快速反应。美国联邦航空管理局 (FAA) 通过引入新技术和程序、创新政策和促进安全和环境可持续性的先进管理实践来支持该系统。FAA 使用其基于绩效的国家航空研究计划 (NARP) 来确保管理研发 (R&D) 投资以取得成果并充分解决国家航空优先事项。NARP 在由六个领域组成的投资组合中介绍了 FAA 的研发计划。如图 1 所示,这些领域包括机场技术、飞机安全保障、数字系统和技术、环境和天气影响缓解、人为因素和航空医学因素以及航空性能和规划。FAA 在每个领域的研究都侧重于新兴技术和新飞机系统的整合,以满足日益增长的航空旅行需求、新进入者和技术能力,同时确保美国航空系统享有的持续安全记录。FAA 研究组合解决了近期、中期和远期(5 年)时间范围内的关键航空研究需求。近期和中期航空研究的一些例子包括确保飞机持续适航、有效的预防措施和飞行中火灾、飞机/发动机结冰的抑制系统以及 NextGen 系统的持续开发。满足当前和未来的需求包括将无人机系统 (UAS) 和其他新技术(如商业航天)整合到国家空域系统 (NAS) 中。此外,需要开展研究来评估新飞机技术和材料(如使用增材制造和纤维增强复合材料)的认证,以确保在不牺牲飞机持续安全运行的情况下实施节约成本和创新技术。这种方法使 FAA 能够应对当前运营世界上最安全、最高效的航空运输系统的挑战,同时以对环境负责的方式为未来系统奠定基础。NARP 采用了 FAA 的研发目标、宗旨和产出框架,共同支持总统、交通部长和 FAA 局长在治理、安全、创新、基础设施和问责制方面提出的战略愿景。
适航认证计划要素 (PE) 通过技术设计批准和系统鉴定符合适当的适航标准来确保陆军飞机和航空系统的安全飞行运行。该 PE 为所有指定的开发中和生产中的陆军飞机(包括有人驾驶和无人驾驶)提供独立的适航鉴定,符合陆军条例 (AR) 70-62 的要求,对于确保陆军飞机的安全运行至关重要。该 PE 执行认证指定陆军飞机适航性所必需的工程功能(设计、分析、测试、演示和系统规范合规性),包括执行飞行安全调查/评估、评估系统风险、制定适航影响声明、制定适航发布以及评估新飞机和升级飞机系统的飞行安全消息和航空安全行动消息。该 PE 还管理/执行陆军的航空设计标准 (ADS) 计划;管理/执行所有指定陆军飞机系统的新系统和物资变更的适航批准;为航空项目执行办公室(PEO AVN)和技术应用项目办公室(TAPO)(陆军特种作战飞机项目办公室)提供适航工程支持,制定重大开发/修改和任何未来系统/子系统的要求;管理测试和评估过程以支持适航鉴定过程。适航认证 PE 还进行一般研究和开发,以支持飞机鉴定和涉及多种飞机型号的总体适航项目。目前正在进行的需要适航鉴定的项目包括:PEO 航空和 TAPO 未来部队系统,包括长弓阿帕奇 E 型;奇努克 F 型;黑鹰 M 型;特种作战 MH-47G 和 MH-60M;轻型通用直升机;灰鹰无人机系统 (UAS);增强型多传感器机载侦察和传感器系统 (EMARSS);和改进的影子 UAS。此外,适航认证 PE 支持将其他关键航空子系统应用于陆军飞机,包括飞机生存能力设备(例如先进威胁红外对抗系统 (ATIRCM)、通用导弹预警系统 (CMWS)、航空任务设备(例如先进多波段航空电子设备和战术无线电系统和数字数据链路)、通用传感器(电光多光谱视觉传感器)和蓝军跟踪器)。092 项目还提供:通过联邦航空管理局的军事认证办公室对军用民用衍生飞机进行技术资格适航认证;制定适航程序、规范、关键标准,和其他设计和资格文件;参与高层领导授权的适航三军活动(例如国家适航委员会、联合航空指挥官组)和条约授权的国际适航相关活动(例如飞入非隔离空域(FINAS));以及在技术转型项目(例如联合多角色(JMR)技术演示和未来垂直升力飞机)和其他国防部长办公室(OSD)计划中有限的早期适航参与。
适航认证计划要素 (PE) 通过技术设计审批和系统认证,确保陆军飞机和航空系统的安全飞行运行,符合适当的适航标准。根据陆军条例 (AR) 70-62 的要求,此 PE 为所有指定的开发和生产中的陆军飞机(包括有人驾驶和无人驾驶)提供独立的适航认证,这对于确保陆军飞机的安全运行至关重要。此 PE 执行认证指定陆军飞机适航性所必需的工程功能(设计、分析、测试、演示和系统规范合规性),包括执行飞行安全调查/评估、评估系统风险、制定适航影响声明、制定适航发布以及评估新飞机和升级飞机系统的飞行安全消息和航空安全行动消息。此 PE 还提供陆军航空设计标准 (ADS) 计划的管理/执行;管理/执行所有指定陆军飞机系统的新系统和物资变更的适航批准;向航空项目执行办公室 (PEO AVN) 和技术应用项目办公室 (TAPO)、陆军特种作战飞机项目办公室提供适航工程支持,制定重大开发/修改和任何未来系统/子系统的要求;管理测试和评估过程以支持适航资格过程。适航认证 PE 还进行一般研究和开发,以支持飞机资格和涉及多种飞机型号的总体适航项目。当前正在进行的需要适航资格的项目包括:PEO 航空和 TAPO 未来部队系统,包括长弓阿帕奇 E 型;奇努克 F 型;黑鹰 M 型;特种作战 MH-47G 和 MH-60M;轻型通用直升机;灰鹰无人机系统 (UAS);增强型多传感器机载侦察和传感器系统 (EMARSS);以及改进的影子 UAS。此外,适航认证 PE 支持将其他关键航空子系统应用于陆军飞机,包括飞机生存能力设备(例如先进威胁红外对抗 (ATIRCM)、通用导弹预警系统 (CMWS)、航空任务设备(例如先进的多波段航空电子设备和战术无线电系统和数字数据链路)、通用传感器(电光多光谱视觉传感器)和蓝军跟踪器)。项目 092 还提供:通过联邦航空管理局军事认证办公室对军用民用衍生飞机进行适航认证;制定适航程序、规范、关键标准以及其他设计和资格文件;参与高级领导授权的适航三军活动(例如国家适航委员会、联合航空指挥官组)和条约授权的国际适航相关活动(例如飞入非隔离空域 (FINAS));以及在技术转型项目中有限的早期适航参与(例如联合多角色 (JMR) 技术演示和未来垂直升力飞机)和国防部长办公室 (OSD) 的其他计划。
现代航空与几年前已大不相同。技术创新和现代化正在以越来越快的速度发展。国际民航组织成员国往往无法实施重大技术里程碑,更不用说以协调的方式实施了。为避免新通信、导航和监视/空中交通管理 (CNS/ATM) 技术的实施不平等和不兼容,国际民航组织需要继续改进国际民航组织监管条款的制定/采用过程,并达成共识,以便及时有效地推出。根据第 13 届空中航行会议的建议和最近的大会决议,国际民航组织开展了综合通信、导航和监视 (CNS) 和频谱 (CNSS) 项目,重点关注 CNS 系统和频谱效率的中长期发展,同时改善 CNS 基础设施的全球协调,并确定 CNS 系统和频谱访问标准化的全新精简框架。在继续坚定地关注航空安全和效率的同时,这一新框架将以有效且经过充分验证的方式利用来自行业的意见,从而确保航空业仍然是频谱资源的负责任用户,同时实现整体系统改进。本报告第 2 章提出了 CNSS 发展的高级路线图草案(以几个专门的路线图为基础)。总的来说,这些概述了中期(2040 年以后)和长期(2050 年以后)必要的战略里程碑和最终目标。国际民航组织优先实施现有标准,而不是制定新标准。CNS 和航空电子技术发展路线图包括灵活的系统设计等新概念,这些概念为最大限度地提高航空业使用其分配频谱的效率提供了机会。结果将有助于:(a) 及早发现与频谱相关的问题和技术差距;(b) 制定具体的技术和性能规范,以支持以全球协调的方式实施未来系统。基于性能的标准比规定性标准和详细的技术规范更受青睐。面对 CNSS 技术的快速发展,相关的 ICAO CNSS 标准框架需要发展。否则,就无法确保以协调的方式和必要的速度制定 SARP、行业标准和详细的技术规范,以确保全球互操作性和持续的高安全水平。实现这一目标将是一项相当大的挑战。然而,最佳方法需要由国际民航组织、各国和整个航空界(包括新进入者)及时确定。为了确定平衡“最低限度基本 CNSS SARP”和“详细技术规范”的最佳方法,ICNSS-TF 已承诺审查和开发潜在的新标准化框架,以更好地支持行业系统开发;并对新系统所需的 CNSS 标准框架以及国际民航组织内部对由此产生的行业投入的任何所需验证活动进行分类。本报告第 3 章将进一步讨论此问题。虽然已经取得了相当大的进展(在本报告中),但这项工作的最终目标是提出一系列建议,供未来大会批准。鼓励各国、国际组织和行业利益攸关方支持国际民航组织继续开展这项工作。
征集创新和原创论文的主题领域包括(但不限于):模拟:具有模拟主导创新的电路;放大器、比较器、振荡器、滤波器、参考电路;非线性模拟电路;数字辅助模拟电路;传感器接口电路;MEMS 传感器/执行器接口、10nm 以下技术的模拟电路。数据转换器:奈奎斯特速率和过采样 A/D 和 D/A 转换器;嵌入式和特定应用的 A/D 和 D/A 转换器;时间到数字转换器;创新和新兴的转换器架构。数字电路、架构和系统*:微处理器、微控制器、应用处理器、图形处理器、汽车处理器、机器学习 (ML) 和人工智能 (AI) 处理器以及片上系统 (SoC) 处理器的数字电路、架构、构建模块和完整系统(单片、小芯片、2.5D 和 3D)。用于通信、视频和多媒体、退火、优化问题解决、可重构系统、近阈值和亚阈值系统以及新兴应用的数字系统和加速器。用于处理器的芯片内通信、时钟分配、软错误和容错设计、电源管理(例如稳压器、自适应数字电路、数字传感器)和数字时钟电路(例如 PLL、DLL)的数字电路。数字 ML/AI 系统和电路,包括近内存和内存计算以及针对新 ML 模型(如 Transformer、图形和脉冲神经网络以及超维计算)的硬件优化。图像传感器、医疗和显示:图像传感器;视觉传感器和基于事件的视觉传感器;汽车、激光雷达;超声波和医学成像;可穿戴、可植入、可摄取设备;生物医学传感器和 SoC、神经接口和闭环系统;医疗设备;微阵列;体域网络和身体耦合通信;用于医疗和成像应用的机器学习和边缘计算;显示驱动器、触摸感应;触觉显示器;用于 AR/VR 的交互式显示和传感技术。存储器:用于独立和嵌入式应用的静态、动态和非易失性存储器;存储器/SSD 控制器;用于存储器的高带宽 I/O 接口;基于相变、磁性、自旋转移扭矩、铁电和电阻材料的存储器;阵列架构和电路,以改善低压操作、降低功耗、可靠性、性能改进和容错能力;内存子系统内的应用特定电路增强、用于 AI 或其他应用的内存计算或近内存计算宏。电源管理:电源管理、电源输送和控制电路;使用电感、电容、和混合技术;LDO /线性稳压器;栅极驱动器;宽带隙(GaN / SiC);隔离和无线电源转换器;包络电源调制器;能量收集电路和系统;适用于汽车和其他恶劣环境的强大电源管理电路;LED驱动器。射频电路和无线系统**:用于接收器、发射器、频率合成器、射频滤波器、收发器、SoC和包含多个芯片的无线 SiP 的射频、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。RF 电路和无线系统**:用于接收器、发射器、频率合成器、RF 滤波器、收发器、SoC 和包含多个芯片组的无线 SiP 的 RF、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及那些可提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。RF 电路和无线系统**:用于接收器、发射器、频率合成器、RF 滤波器、收发器、SoC 和包含多个芯片组的无线 SiP 的 RF、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及那些可提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。以及提高频谱和能源效率的芯片。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。以及提高频谱和能源效率的芯片。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。硅电子-光子集成;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。硅电子-光子集成;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。