摘要。尽管即使是非常先进的人工系统也无法满足人类成为社会互动适当参与者所需的苛刻条件,但我们认为并非所有人机交互 (HMI) 都可以适当地简化为单纯的工具使用。通过批评标准意向性主体解释的过于苛刻的条件,我们建议采用一种最小方法,将最小主体归因于某些人工系统,从而提出将采取最小联合行动作为社会 HMI 的案例。在分析此类 HMI 时,我们利用了丹尼特的立场认识论,并认为出于多种原因,采取意向性立场或设计立场可能会产生误导,因此我们建议引入一种能够捕捉社会 HMI 的新立场——人工智能立场。
本本学论文研究了使Ari人形机器人能够使用机器学习和计算机视觉中的基本概念来学习和识别新对象的任务。该研究围绕着开发和实施直接向前的3D对象检测和分类管道,目的是使机器人能够识别以前尚未遇到的对象。该方法整合了开放式识别和增量学习的基本方面,重点是使用ARI机器人在实用环境中应用这些技术。通过一系列元素实验评估了实施系统的有效性,重点关注其检测和分类新的观察的能力。这些初始测试提供了有关系统在受控环境中的基本功能及其潜在效用的见解。本文在介绍性层面上有助于掌握机器人技术,并在实用机器人背景下对机器学习和计算机视觉的使用进行了初步探索。它为在机器人对象识别领域的未来研究奠定了基础。
然而,十年后,由于计算机科学研究的进步和摩尔定律,人工智能重新兴起。根据 Investopedia 的说法,摩尔定律“意味着随着集成电路上的晶体管效率的提高,计算机、在计算机上运行的机器和计算能力都会随着时间的推移变得更小、更快、更便宜”(Tardi 2021)。³ 简而言之,学者们可以预期计算机的速度和能力会随着时间的推移而提高。此外,Yann LeCun 和 Jürgen Schmidhuber 等关键研究人员开发了深度学习等先进算法,推动了 21 世纪人工智能的持续进步。⁴ Mathworks 将深度学习描述为“一种机器学习技术,它教计算机做人类自然而然的事情:通过示例学习”(“什么是深度学习?” 2019)。深度学习
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
一名71岁的女性从未吸烟,患有乳腺癌的家族史(60年代初的母亲和妹妹),向她的初级保健医生出现,左臂和乳房疼痛。她在两周前在左臂上咬了一口,并接受了预防性强力霉素。体格检查显示2厘米温和嫩,左腋窝中没有皮肤病变,皮疹或乳房肿块。没有其他肿胀的腺体,其余的身体检查是正常的。她的初级保健医师考虑了莱姆病的诊断,并下令进行胸部X射线,完全的血液计数和莱姆抗体滴度,以进一步评估其他淋巴结肿大的原因。患者的病史对于大约一年前的右上臂0.4 cm x 0.7 cm原发基底细胞癌很重要,她进行了莫尔斯手术,具有阴性的表面和深层手术缘,没有复发的证据。她没有任何免疫抑制,暴露于过度紫外线辐射的病史或职业暴露会增加她患癌症的风险。她没有抽烟或喝酒。她的家族史对包括卵巢癌和结肠癌在内的其他癌症以及对母亲或妹妹的BRCA(乳腺癌基因)测试的结果是否定的。
在半个世纪的进步之后,癌症研究已从简单化的方法发展为多维方法,涵盖了癌细胞自身及其周围肿瘤微环境中癌细胞变化之间复杂而动态的相互作用。1癌细胞内的改变,无论是基因组,转录组或表观遗传学,在癌变中都起着重要作用。该过程的复杂性解释了发生在同一器官部位或不同的微环境中的转移内和之间的实质生物异质性。2此外,这些复杂性进一步由室内异质性宿主/微生物群相互作用和药物分布更加复杂。3,尽管靶向疗法的最新进展以及新型治疗方法的发展,但传统的一定程度的方法无法实现预期的结果。朝精度肿瘤学的战略转变为整合患者和肿瘤的分子数据以实现更全面的特征 - 对肿瘤的特征,并为每个患者的特定需求量身定制治疗方法,以确保正确的治疗,以正确的剂量和正确的时间来定制治疗方法。4,5
背景。未知原始起源(CUP)的癌占新诊断的晚期恶性肿瘤的2% - 5%,并以化学疗法作为护理标准。Cupisco(NCT03498521)是一项正在进行的随机试验,该试验使用全面的基因组亲膜(CGP),将杯赛患者分配给基于基因组亲实现的靶向或免疫疗法治疗臂。,我们对CGP的杯子病例进行了重新观察分析,以确定有多少有资格进入实验性杯状臂的可能有资格。材料和方法。使用基于混合捕获的基础CDX分析(平均覆盖范围,> 600倍)分析了基础库数据库中基础科目数据库中的腺癌和未分化的杯子标本。确定了基因组改变,微卫星不稳定性(MSI),肿瘤突变负担(TMB),杂合性(GLOH)的基因组丧失(GLOH)和程序性死亡 - 结构1(PD-L1)阳性。
摘要目的:用脑部计算机界面系统对运动皮层激活进行神经反馈训练可以增强中风患者的恢复。在这里,我们提出了一种新方法,该方法训练与运动性能相关的静止状态功能连接,而不是与运动相关的激活。方法:使用神经反馈和源功能连通性分析和视觉反馈,将十个健康受试者和一名中风患者在其手运动区域和其他大脑之间受过训练的α波段连贯性。结果:十分之一的健康受试者中有7个能够在一次疗程中增加手运动皮层和其他大脑其他大脑之间的α波段连贯性。慢性中风的患者学会了增强其受影响的原发性运动皮层的α波段连贯性,该病神经皮层在一个月内应用了一个月。连贯性在靶向运动皮层和α频率中特别增加。这种增加与中风后运动功能的临床有意义且持久的改善有关。结论:这些结果提供了概念证明,即对α波段连贯性的神经反馈训练是可行的,并且在行为上是有用的。意义:该研究提供了证据表明α波段在运动学习中的作用,并可能导致新的康复策略。1简介大脑界面(BCI)的技术可以监测大脑活动和生成有关活动模式特定变化的实时输出。这特别显示了有关感觉运动节奏(SMR)的表明。记录的受试者会收到有关与他/她的努力相关的神经活动的反馈,因此可以学会自愿调节大脑活动(Kamiya,1969)。SMR对应于α和β频率(〜8-30 Hz)中感觉运动皮层中神经元基的活性,这被真实或想象中的运动抑制(Arroyo等,1993; Pfurtscheller等人,2006年)。人类自愿调节SMR的能力导致BCI的发展用于运动替代,即控制假体和机器人设备(Galan等,2008; McFarland等,2008)。BCI技术的最新应用包括通过反馈训练大脑模式。在神经居住中,神经反馈的兴趣主要在于它可能改善脑部病变患者恢复的潜力(Birbaumer等,2007; Daly等,2008)。运动康复的神经反馈主要旨在训练SMR调节(Buch等,2008; Broetz等,2010; Caria等,2011; Ramos-Murguiarlday等,2013),因此可以看作是对运动成像训练的支持(Mattia等人(Mattia等,2012)。
肌肉营养不良,需要心脏移植,在明显的骨骼肌受累之前6年。神经肌肉疾病。1999; 9(8):598-600。 22。 Wu RS,Gupta S,Brown RN等。 在肌营养不良患者中进行的腹腔直接移植后的临床结局。 j心脏肺移植。 2010; 29(4):432-438。 23。 Hanke SP,Gardner AB,Lombardi JP等。 BARTH综合征中的左心室非压实心肌病:一个起伏的心脏表型的例子,需要机械囊性支撑作为移植的桥梁。 儿童核心。 2012; 33(8):1430-1434。 24。 Feingold B,Mahle WT,Auerbach S等。 美国心脏协会心脏病患者心力衰竭委员会Y,Y,临床C委员会,心血管委员会R,心血管委员会R,干预委员会,功能性G,Translations B,Stroke B,Stroke C.心脏参与的管理与Neuromuscu-神经司法疾病有关:与美国心脏协会的科学疾病有关。 循环。 2017; 136(13):E200-E231。1999; 9(8):598-600。22。Wu RS,Gupta S,Brown RN等。在肌营养不良患者中进行的腹腔直接移植后的临床结局。j心脏肺移植。2010; 29(4):432-438。 23。 Hanke SP,Gardner AB,Lombardi JP等。 BARTH综合征中的左心室非压实心肌病:一个起伏的心脏表型的例子,需要机械囊性支撑作为移植的桥梁。 儿童核心。 2012; 33(8):1430-1434。 24。 Feingold B,Mahle WT,Auerbach S等。 美国心脏协会心脏病患者心力衰竭委员会Y,Y,临床C委员会,心血管委员会R,心血管委员会R,干预委员会,功能性G,Translations B,Stroke B,Stroke C.心脏参与的管理与Neuromuscu-神经司法疾病有关:与美国心脏协会的科学疾病有关。 循环。 2017; 136(13):E200-E231。2010; 29(4):432-438。23。Hanke SP,Gardner AB,Lombardi JP等。 BARTH综合征中的左心室非压实心肌病:一个起伏的心脏表型的例子,需要机械囊性支撑作为移植的桥梁。 儿童核心。 2012; 33(8):1430-1434。 24。 Feingold B,Mahle WT,Auerbach S等。 美国心脏协会心脏病患者心力衰竭委员会Y,Y,临床C委员会,心血管委员会R,心血管委员会R,干预委员会,功能性G,Translations B,Stroke B,Stroke C.心脏参与的管理与Neuromuscu-神经司法疾病有关:与美国心脏协会的科学疾病有关。 循环。 2017; 136(13):E200-E231。Hanke SP,Gardner AB,Lombardi JP等。BARTH综合征中的左心室非压实心肌病:一个起伏的心脏表型的例子,需要机械囊性支撑作为移植的桥梁。儿童核心。2012; 33(8):1430-1434。 24。 Feingold B,Mahle WT,Auerbach S等。 美国心脏协会心脏病患者心力衰竭委员会Y,Y,临床C委员会,心血管委员会R,心血管委员会R,干预委员会,功能性G,Translations B,Stroke B,Stroke C.心脏参与的管理与Neuromuscu-神经司法疾病有关:与美国心脏协会的科学疾病有关。 循环。 2017; 136(13):E200-E231。2012; 33(8):1430-1434。24。Feingold B,Mahle WT,Auerbach S等。美国心脏协会心脏病患者心力衰竭委员会Y,Y,临床C委员会,心血管委员会R,心血管委员会R,干预委员会,功能性G,Translations B,Stroke B,Stroke C.心脏参与的管理与Neuromuscu-神经司法疾病有关:与美国心脏协会的科学疾病有关。循环。2017; 136(13):E200-E231。2017; 136(13):E200-E231。
1医学物理系,IRCCS Azienda Ospedaliero-Universitaria di Bologna,意大利博洛尼亚; 2纽约纽约的纪念斯隆·凯特林癌症中心医学物理部; 3威斯康星大学 - 威斯康星州麦迪逊分校放射学系; 4马里兰州格伦·伯尼(Glen Burnie)核医学研究所; 5澳大利亚新南威尔士州瓦格·瓦格(Wagga Wagga)查尔斯·斯特特大学(Charles Sturt University)牙科与健康科学学院; 6康涅狄格州纽黑文市耶鲁大学医学院放射学和生物医学成像系; 7密苏里州圣路易斯的华盛顿大学生物医学工程和Mallinckrodt放射学院; 8拉脱维亚拉脱维亚大学临床与预防医学研究所; 9纽约纽约的纪念斯隆·凯特林癌症中心放射学系;纽约纽约市威尔·康奈尔医学院放射学系10; 11加利福尼亚州戴维斯戴维斯分校生物医学工程系;瑞士伯尔尼大学核医学系12; 13加拿大不列颠哥伦比亚大学不列颠哥伦比亚大学放射学系; 14放射学和放射科学系,约翰·霍普金斯医学院,马里兰州巴尔的摩; 15瑞士日内瓦日内瓦大学医院核医学和分子成像司; 16荷兰格罗宁根大学医学中心格罗宁根大学核医学与分子成像系; 17加拿大不列颠哥伦比亚省的不列颠哥伦比亚大学放射与物理学系;和18 United Theranostics,贝塞斯达,马里兰州