运行世界上最大的 Ruby on Rails 安装之一 200 名工程师 整体式:管理原始数据库、memcache、呈现站点和 * 在一个代码库中呈现公共 API 越来越难以理解的系统;管理和并行化工程团队在组织上具有挑战性 达到了我们存储系统 (MySQL) 的吞吐量极限;在整个数据库中读取和写入热点 使用机器来解决问题;每台机器的吞吐量低(CPU + RAM 限制,网络未饱和) 优化角:在代码可读性和性能之间进行权衡
阿肯色州的 SOR IV 分发计划将继续努力达到饱和状态,并利用 GIS 热图分析按县识别过量用药热点。该计划的实施阶段将首先优先覆盖 14 个未饱和县,然后集中于特定的需求区域。OSAMH 将与外部供应商合作,与预防提供商网络合作,提供、培训、营销和计划分发。纳洛酮将通过十三个指定预防区域的经过审查的本地接入点提供。外部供应商将根据需要审查、监控和补充供应。外部供应商将通过邮购服务管理个人请求,并将纳洛酮直接分发给高风险个人,重点是分发到农村地区的小订单。OSAMH 将制作、标准化和更新个人和组织如何有效管理纳洛酮的综合培训,并在可能的情况下利用点对点健康教育者计划。合作伙伴关系
*电子邮件:p.melchiorre@unibo.t对反应的选择性的精确控制是一个基本目标。尽管在实现立体控制方面已经获得了巨大的进步,但底物内官能团(化学选择性)的选择性操纵仍然是一个挑战。醛的氰化作用提供了一个说明性的例子:1,2-将亲核氰化物添加到醛基团中是立体选择性cat-alytic过程的第一个例子之一。相比之下,即使是在紫红色的变体中,也是线性α,β-未饱和醛的共轭氰化物仍然存在染料。主要难度在于在首选氰化物1,2粘合方面达到1,4化学选择性。在这里,我们报告了一种不对称的催化方法,以实现二烷的独家结合氰化。手性有机催化剂具有可见光激活的光蛋白-DOX催化剂的协同作用促进了抑制的单电子还原,从而诱导了正式的极性反转。在特征上具有亲核的手性自由基被具有完美的1,4化学选择性和良好立体控制的亲电氰化物源拦截。
全石英光纤被证实是适用于近红外、可见光和紫外光谱区域功率应用的光导。提高光纤对紫外线和伽马射线的抵抗力是发展现代能量学和激光技术的重要任务。这项研究检查了芯材料成分 [1、2、3]、预制棒生产技术 [4] 和氢后处理对全石英光纤对紫外线辐射的光学稳定性的影响。精心设计的光纤涂层由碳和聚酰亚胺层组成,允许在 250°C 时达到氢饱和,但在室温下表现出优异的气密性。对未饱和氢的光导的比较研究表明,羟基含量高和低的二氧化硅可能具有足够的初始紫外线透明度并能抵抗紫外线照射。更为重要的是,二氧化硅结构中存在缺陷,导致 200 - 400 nm 区域的吸收,以及 Si-H 和 Si-Cl 基团的存在,这些基团是吸收峰在 214nm 和 330 nm 处的缺陷的前体。反射层的沉积方法对光纤芯中缺陷和 Si-H 基团的发生率有显著影响。对诱导损耗最显著的影响是由光纤的氢处理引起的。本研究的结果为波长区域 200 nm 的紫外线稳定和低损耗全石英光纤生产提供了策略 -