摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
•对于出发航班,在关闭主飞机门后的三个小时(用于国内航班)或四个小时(对于国际航班上)的飞机开始返回合适的下船点在脱皮乘客的停机坪上的位置,或•空中交通管制(ATC)建议飞行员指示,返回到脱机乘客的合适的下船点将大大破坏机场运营的努力,制定了一个详细的计划,该计划既有既定的触发点,又可以考虑到那些未能造成的Tables Delailds造成的触发器。努力航空的计划达到或超过了本规则施加的所有限制。
摘要 迄今为止,大多数量子计算架构都原生支持多值逻辑,尽管通常以二进制方式运行。多值或 qudit 量子处理器可以使用更丰富的量子纠缠形式,这有望显著提高量子设备的性能和实用性。然而,利用此类硬件所需的大部分理论以及相应的设计方法仍然不足,而且从量子位进行推广并不简单。一个特殊的挑战是将量子电路编译成由最先进量子硬件支持的本机 qudit 门集。在这项工作中,我们通过引入一个完整的工作流程来应对这一挑战,该工作流程将任何两 qudit 单元编译为任意本机门集。案例研究证明了所提出的方法以及相应实现的可行性(可在 github.com/cda-tum/qudit-entanglement- compilation 免费获得)。
本文探讨了逆转量子计算机门作为从量子计算机收集法医证据的途径。迄今为止,对量子计算系统的法医研究很少,在实时恢复环境中几乎没有实验。本文通过对当前研究的回顾和实时数据收集的演示,讨论了量子计算机实时取证的方法。结果是对真实量子系统进行的分析相结合,以产生量子取证方法。此外,这项工作将强调实时取证的可行性,并在很大程度上驳斥了 Overill 关于不可能对量子系统进行实时取证的断言。我们相信这项工作代表着朝着彻底改变整个量子取证领域迈出了非常重要的一步。
摘要 迄今为止,大多数量子计算架构都原生支持多值逻辑,尽管通常以二进制方式运行。多值或 qudit 量子处理器可以使用更丰富的量子纠缠形式,这有望显著提高量子设备的性能和实用性。然而,利用此类硬件所需的大部分理论以及相应的设计方法仍然不足,而且从量子位进行推广并不简单。一个特殊的挑战是将量子电路编译成由最先进量子硬件支持的本机 qudit 门集。在这项工作中,我们通过引入一个完整的工作流程来应对这一挑战,该工作流程将任何两 qudit 单元编译为任意本机门集。案例研究证明了所提出的方法以及相应实现的可行性(可在 github.com/cda-tum/qudit-entanglement- compilation 免费获得)。
本文探讨了逆向量子计算机门作为从量子计算机收集法医证据的途径。迄今为止,对量子计算系统的法医研究很少,在实时恢复环境中几乎没有实验。这项工作通过查看当前对该问题的研究以及实时数据收集的演示,讨论了量子计算机实时取证的方法。结果是对真实量子系统进行的分析相结合,以产生量子取证方法。此外,这项工作将强调实时取证的可行性,并在很大程度上驳斥了 Overill 关于不可能对量子系统进行实时取证的断言。我们相信这项工作代表着朝着彻底改变整个量子取证领域迈出了非常重要的一步。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
空气泄漏是建筑物内能源消耗的重要驱动因素,在某些情况下是供暖和制冷负荷的最大驱动因素。该技术通过使用改进的鼓风机门加压建筑围护结构,然后分配雾化的无毒水基密封剂,该密封剂会自动吸入泄漏处,从而密封建筑围护结构。系统软件监控空间的温度、气压和湿度,同时控制密封剂的分配并实时记录进度。在部署自动化系统之前,所有完成的水平表面以及不应密封的开口都将被覆盖。然后对空间加压,无线网状网络控制喷嘴阵列,并通过跟踪建筑物泄漏的空气来分配密封剂。密封剂颗粒是超低挥发性有机化合物 (VOC),不会释放气体,它们会逐渐堆积在一起,将围护结构泄漏封闭到系统软件指定的程度。该系统会创建一个数字记录,跟踪处理前后的空气泄漏情况。密封程序完成后,可在 30 分钟内重新进入该空间。
近期量子计算机的计算能力受到门操作的噪声执行和有限数量的物理量子比特的限制。混合变分算法非常适合近期量子设备,因为它们允许在用于解决问题的量子资源和经典资源数量之间进行广泛的权衡。本文通过研究一个具体案例——将量子近似优化算法 (QAOA) 应用于最大独立集 (MIS) 问题的实例——研究了算法和硬件层面的权衡。我们考虑了 QAOA 的三种变体,它们在算法层面根据所需的经典参数数量、量子门和所需的经典优化迭代次数提供不同的权衡。由于 MIS 是一个受约束的组合优化问题,因此 QAOA 必须尊重问题约束。这可以通过使用许多多控制门操作来实现,这些操作必须分解为目标硬件可执行的门。我们研究了该硬件级别可用的权衡,将不同本机门集的门保真度和分解效率组合成一个称为门分解成本的单一指标。
•模型代码增加了采样漏气(鼓风机门),管道泄漏(风管爆破器)和用于多户住宅的机械通气测试。奥斯汀修正案已经允许进行采样。奥斯汀建议将修正案与新的模型代码要求保持一致。•模型代码已将建筑物信封的空气泄漏目标从5到4 ACH50的气候区域2。奥斯汀建议将修正案与新的模型代码要求保持一致。注意,由于2021 IECC中引入的机械通气测试要求,奥斯汀的许多项目已过渡到内联风扇。整个住宅机械通气的这种变化使ACH更智能减少。仍需要做一些工作来教育和培训当地承包商和建筑商,以避免在我们炎热,潮湿的气候中可能发生的潜在霉菌/霉菌问题。•模型代码已将导管泄漏测试目标更新为表格,以说明房屋地板面积和管道收益次数。对管道泄漏测试的奥斯汀修正案已经进行了十多年。奥斯汀建议按照目前修订的管道泄漏测试目标。