摘要 —近年来,量子计算界见证了大量在近期硬件上实现非平凡量子计算的新方法。一个重要的研究方向是将任意纠缠态(表示为幺正)分解为量子电路,即量子处理器支持的一系列门。众所周知,对于当前嘈杂的中等规模量子设备而言,分解时间较长和多量子比特门纠缠较多的电路容易出错。为此,人们对开发基于启发式的方法来发现紧凑电路产生了浓厚的兴趣。我们为此做出了贡献,提出了 QuantumCircuitOpt (QCOpt),这是一个新颖的开源框架,它实现了数学优化公式和算法,用于将任意幺正门分解为一系列硬件原生门。QCOpt 的一个核心创新是它为其生成的量子电路提供最优性保证。具体来说,我们表明 QCOpt 可以将最多四个量子比特的电路中所需的门数量减少 57%,并且在商用计算硬件上的运行时间不到几分钟。我们还通过与简单的强力枚举算法进行比较,验证了 QCOpt 作为量子电路设计工具的有效性。我们还展示了 QCOpt 包如何适应各种内置类型的本机门集,这些门集基于不同的硬件平台,例如 IBM、Rigetti 和 Google 生产的硬件平台。我们希望这个包将促进量子处理器设计人员以及量子物理学家进一步探索算法。
量子计算机提供了一种有前途的方法,可以研究除classical模拟以外的多体系统的动力学。另一方面,开发的分析方法和从可集成系统获得的结果提供了有关多体系统的深刻见解。对集成系统的量子仿真不仅为量子计算机提供了有效的基准测试,而且还是研究可破坏系统的第一步。模拟集成系统的构建块是杨巴克斯特门。至关重要的是要知道如何最佳地实现量子计算机上的杨巴克斯特门。基于杨巴克斯门的几何图片,我们提供了两种类型的杨巴克斯门的最佳实现,其cnot或r zz门的数量最少。我们还展示了如何通过脉冲控制系统地实现杨手机门。我们测试并比较了IBM量子计算机上的不同实现。我们发现,与最佳的CNOT或R ZZ实现相比,阳式门的脉冲实现总是具有更高的栅极保真度。在上述最佳实现的基础上,我们证明了量子计算机上的Yang-Baxter方程的模拟。我们的结果为基于杨百车门的进一步实验研究提供了指南和标准。
1. 使用哪种能源估算方法(例如,修正度日、可变基准度日、ASHRAE 箱、ASHRAE 修正箱)。 2. 使用哪种气候数据格式(例如,度日、箱或每小时数据)?如果使用度日气象数据,使用什么基准温度以及为什么?不同的分受助者使用哪些气象数据站点? 3. 住宅单元的现有能源使用和能源需求是根据实际能源账单、普遍接受的工程计算还是两者确定的? 4. 能源审计是否解决了所有重要的供暖和制冷需求? 5. 如何估算传导、对流和辐射热损失(或增益)? 6. 能源估算方法如何处理来自内部来源的显热和潜热增益? 7. 在审计期间,如何估算预风化和后风化期间供暖和制冷设备的能耗(例如,稳态效率、部分负荷曲线)? 8. 能源估算方法如何使用鼓风机门读数和其他测试结果(例如管道泄漏)?9. 能源审计软件如何处理生活热水和/或家用电器测量?10. 估计的燃料/能源成本节省是否折算为净现值?11. 对于多户型审计,审计使用哪些内部验证功能(例如使用实际能耗对模型进行校正)来验证每次审计,或者受让人如何确保建筑物模型正确?
摘要。由于Cremers等人,Buff转换。(S&P'21),是数字签名方案的通用转换,目的是获得超出义务的额外安全保证:独家所有权,消息结合的签名和不可辨认性。非可分离性(本质上挑战了对手重新签署一个未知的信息,它仅获得了signalth的信息),这是一个微妙的问题,就像最近的Don等人一样。(加密24)表明,最初的定义基本上是无法实现的。特别是,它不是通过buff变换来实现的。这导致引入了新的,削弱的非可分辨率,这些版本(可能是)可实现的。,结果表明,Buff变换的盐变体确实达到了一些弱化的可分离性。但是,盐需要额外的随机性,并且会导致稍大的特征。原始的Buff转换是否也实现了一些有意义的非可分辨率概念,这是一个自然的开放问题。在这项工作中,我们肯定地回答了这个问题。我们表明,面对已知的不可能结果,Buff转换满足了人们所希望的(几乎)最强的不可分辨率的概念。我们的结果涵盖了统计和计算情况,以及经典和量子设置。我们分析的核心是一个新的安全性游戏,用于我们称之为捉迷藏的随机门。乍看之下似乎是无辜的,但严格的分析却令人惊讶地具有挑战性。
词汇表绝对湿度 - 以每磅干空气中的水蒸气(或磅)表达的空气水分含量。吸收 - 表面吸收的辐射与落在该表面上的总能量的比率。主动太阳能 - 特殊设备使用的太阳能辐射可提供空间加热,热水或电力。空气屏障 - 建筑物外壳的任何部分都具有抵抗空气泄漏的能力。空气屏障会阻止大多数空气泄漏,这是有效的。主要的空气屏障是一系列空气屏障中最有效的。空气变化 - 在给定时间段内的空间中替换一定数量的空气,通常表示为每小时空气变化。如果建筑物每小时有一个空气变化,则相当于建筑物中的所有空气在一个小时内被替换。空气在50 pascals上发生变化 - 当鼓风机门减压到50 pascals时,房屋的完整体积被换成外部空气的次数。空调 - 用于空气处理的设备组装,该设备由通风,空气循环,空气清洁和传热(供暖或冷却)组成。该单元通常由蒸发器或冷却线圈组成,以及电动压缩机和冷凝器组合。空气膜 - 一层与表面相邻的空气,可提供热电阻。空气膜系数 - 通过空气膜进行传热的量度。空气处理器 - 一个钢制柜,该钢柜装有带冷却和/或加热线圈的鼓风机。空对空热交换器 - 带有单独的空气室的设备,可在有条件的空气和供应到建筑物的外部空气之间转移热量。环境气温 - 周围温度,例如建筑物周围的室外空气温度。环境照明 - 照明散布在照明空间,以确保安全,安全和美学。交替电流(AC) - 电流的流量不断改变正面和负面之间的方向。美国电力公司几乎所有的功率都以每秒60次的速度移动,这一方向移动。
随机量子电路通常被认为难以进行经典模拟。在某些情况下,这已被正式推测——在深度二维电路的背景下,这是谷歌最近宣布“量子计算霸权”的基础——并且没有证据反对更普遍的可能性,即对于具有均匀随机门的电路,典型实例的近似模拟几乎与精确模拟一样困难。我们通过展示一个浅随机电路系列来证明情况并非如此,该电路系列在标准难度假设下无法有效地进行经典模拟,但可以近似模拟除超多项式一小部分电路实例之外的所有电路实例,时间与量子比特和门的数量成线性关系;这个例子限制了最近随机电路模拟的最坏情况到平均情况简化的稳健性。虽然我们的证明是基于一个人为的随机电路系列,但我们进一步推测,足够浅的恒定深度随机电路通常可以有效地模拟。为此,我们提出并分析了两种模拟算法。通过为深度为 3 的“砖砌”架构实现我们的一种算法(该架构很难进行精确模拟),我们发现一台笔记本电脑可以在 409×409 网格上模拟典型实例,变分距离误差小于 0.01,大约需要一分钟每个样本,而这项任务对于以前已知的电路模拟算法来说是难以完成的。数值证据表明该算法仍然渐近有效。我们严格的复杂性分离和猜想的关键在于观察到 2D 浅随机电路模拟可以简化为由交替进行的随机局部幺正和弱测量组成的 1D 动态形式的模拟。类似的过程最近成为一项深入研究的焦点,该研究通过数值发现,随着测量强度的变化,动力学通常会经历从高效模拟状态到低效模拟状态的相变。通过从随机量子电路到经典统计力学模型的映射,我们给出了分析证据,表明我们的算法会发生类似的计算相变,因为电路架构的参数(如局部希尔伯特空间维度和电路深度)
执行摘要F-22A,T/N 06-4109 NELIS空军基地,内华达州,2020年10月30日,2020年10月30日,大约在当地时间0930年,Mishap飞机(MA),F-22A,F-22A,尾巴号(T/N)06-4109,在Auxiliary Power Eutition(Apu)的尾气单元(APU)的尾气过度。MA被分配到NELIS空军基地(AFB),内华达州(NV)的422D测试和评估中队,总部位于佛罗里达州Eglin AFB。MA由第757架飞机维护中队,第57翼,Nellis AFB,NV。估计更换受损零件并修复MA的估计成本为2,690,000美元。2020年6月26日,MA开始进行广泛的修改,为操作测试任务做准备。 2020年10月28日,为了促进MA修改的故障排除,删除了APU混合排气管(AMED),在此期间未拉动和扣紧时间,在此期间,未对MA的结构或MA的数字形式提出警告,并根据维护成员(MXM)(MXM)1。2020年6月26日,MA开始进行广泛的修改,为操作测试任务做准备。2020年10月28日,为了促进MA修改的故障排除,删除了APU混合排气管(AMED),在此期间未拉动和扣紧时间,在此期间,未对MA的结构或MA的数字形式提出警告,并根据维护成员(MXM)(MXM)1。此外,这些错误未通过验证MXM1工作的现场7级主管MXM2纠正。2020年10月30日,MA需要通过航空航天地面设备(年龄)对飞机门进行防护和重新配置,但决定使用APU。在不幸的那天,APU紧急开关(AES)被错误地设置为“正常”。在术前检查中,MXM3在对MA表格的审查和通过视觉检查中未能识别,并在APU操作之前需要AMED安装。APU开始后,烟雾开始从Apu排气舱开始散发到左主登陆齿轮轮。MXM3延迟了紧急APU关闭,以查看故障报告代码(错误)的数字表格。附近的维护成员接近MA,并将AES设置为“紧急情况”,并手动关闭APU。事故调查委员会主席(BP)发现,大量证据表明,事故的原因是不当维护程序,导致APU开始时,在删除了AMED。BP还通过大量证据发现的四个其他因素,这些因素实质上导致了不幸的问题:(1)事故单位的培养物,包括对CB项圈的使用有限和对警告的使用不一致; (2)MA上测试仪器的设计,该仪器掩盖了对适用的CBS的访问; (3)MA修改的广泛性质; (4)由未成年人当天的几个非标准事件引起的干扰。