注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE-AC0500OR22725,与美国能源部签订。美国政府保留,出版商在接受文章发表时,承认美国政府保留非独占、已付清、不可撤销的全球许可,可出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 (http://energy.gov/downloads/doe-public-access-plan) 向公众提供这些联邦资助研究的结果。
金属卤化物钙钛矿 (MHP) 中的电子传输和磁滞是光伏、发光器件以及光和化学传感器应用的关键。这些现象受到材料微观结构的强烈影响,包括晶界、铁性畴壁和二次相夹杂物。在这里,我们展示了一个主动机器学习框架,用于“驱动”自动扫描探针显微镜 (SPM) 来发现负责 MHP 中传输行为特定方面的微观结构。在我们的设置中,显微镜可以发现最大化传导、磁滞或任何其他可以从一组电流-电压光谱中得出的特征的微观结构元素。这种方法为通过 SPM 探索复合材料中材料功能的起源开辟了新的机会,并且可以在功能探测之前(先验知识)或之后(确定感兴趣的位置进行详细研究)与其他表征技术相结合。
虽然人们已经充分了解了 Al-Cu 合金在拉伸状态下的沉淀物-位错相互作用,但对蠕变行为的研究却少得多。新型热稳定 Al-Cu 合金具有 θ′ (Al 2 Cu) 作为强化沉淀物,在高达 300°C(约 60% 的熔化温度)及更高的温度下仍保持稳定,此时蠕变对机械行为至关重要。本研究使用原位中子衍射和扫描透射电子显微镜确定了此类 Al-Cu 合金中的沉淀物-位错相互作用。发生了向 θ′ 沉淀物的显著负载转移,这可归因于 θ′ 和 Al 基体界面上的位错环。因此,Orowan 环被确定为沉淀物-位错相互作用的主要活动。由于 Orowan 环和负载转移与显著的应变硬化有关,这些结果解释了这种合金中表现出的出色抗蠕变性,并为设计具有卓越蠕变性能的沉淀强化合金提供了见解。
注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE-AC0500OR22725,与美国能源部签订。美国政府保留,出版商在接受文章发表时,承认美国政府保留非独占、已付费、不可撤销的全球许可,可以出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 (http://energy.gov/downloads/doe-public-access-plan) 向公众提供这些联邦资助研究的结果。
注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE- AC0500OR22725,与美国能源部签订。美国政府保留,出版商在接受文章发表时,承认美国政府保留非独占、已付费、不可撤销的全球许可,可以出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 (http://energy.gov/downloads/doe-public-access-plan) 向公众提供这些联邦资助研究的结果。
注意:本稿件由 UT-Battelle, LLC 撰写,合同编号为 DE- AC0500OR22725,与美国能源部签订。美国政府保留,出版商在接受文章发表时,承认美国政府保留非独占、已付费、不可撤销的全球许可,可以出于美国政府目的出版或复制本稿件的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 ( http://energy.gov/downloads/doe-public-access-plan ) 向公众提供这些联邦资助研究的结果。
在修改后的投稿中,作者令人满意地解决了我对他们原始投稿提出的意见和疑虑。我认为这篇论文是该领域的重要贡献,因此判断它满足了在《自然通讯》上发表的要求。因此我建议发表。我只有一些小的意见和建议:• 在第 112/113 行,他们指出,发现分割过程对耦合器出口处的电位有很强的依赖性。这个说法很模糊,但这一点对其他人来说很有趣。也许可以详细说明一下?如果需要更多空间,也许可以添加补充?• 图 2a 缺少垂直(电位)轴的比例尺。此外,灰色阴影的作用(编码 epsilon = 3.5 meV 的状态概率?)没有在任何地方提及。• 图 2c:L+U 的数据和标签应该更暗(打印输出中太亮了)。此外,加号的垂直线不应与网格线完全对齐(或 L+U 标签后面的白色部分)• 第 165 行:我对“两级系统分裂”这一表述的适用性表示怀疑。• 第 219 行:“效率”不是 4b 中数据的正确术语,更好的术语是“转移概率”• 图 5b:我的打印机没有打印 5b 中的灰度图(屏幕上有),应该检查