摘要:本文分析了两次1990年代的妇女回忆录,这些妇女因遗传性精神疾病而苦苦挣扎,她们对揭示自己的状况以及她们的启示是否会侵犯其密切关系的隐私表示焦虑。中世纪的供词诗在凯·雷德菲尔德·贾米森(Kay Redfield Jamison)的《无想的心灵》(1995年)和梅里·纳娜·纳娜·丹玛(Meri Nana-Nana-Mama Danquah)的柳树(Meri Nana-Mama danquah's Willow for Me)中影响自我披露的模式(1998年),尽管该成员担心对1960年代的遗传学和生物学精神病学的担忧。正如我们所显示的,围绕精神疾病的语言结构妇女在临床环境中的隐私,并包含了真实自我代表的性别和种族障碍。交叉语言使妇女能够对自己的状况发表声音,并以自己的条件获得私人身份。
摘要。手机现在已成为一种基本必需品。根据日常需要,每个人都肯定有一部手机。只需一只手即可捕捉连接并开展各种活动。本研究的对象是评测具有最佳人工智能相机的智能手机。研究中使用的数据处理方法使用朴素贝叶斯算法。朴素贝叶斯被认为是文本挖掘分类准确度最好的方法之一。研究目的是方便那些购买具有最佳人工智能相机的智能手机的客户,而无需阅读产品评论。这样它就可以根据正面文本的分类来查看并标记负面文本分类。在本研究中,n-gram 用作字符选择器以提供更好的准确性结果。根据研究结果,Na¨ıve Bayes 的准确率为 72.00%,那么 Na¨ıve Bayes 的 n-gram 选择准确率为 N-gram = 2,准确率为 72.00%,n-gram = 3,准确率为 75.00%,n-gram = 4,准确率为 74.50%。本研究进行了 10 次实验,以测量 n-gram 的加入对准确率的提高。从而得出结论,n-gram 特性的应用可以提高 Na¨ıve Bayes 算法的准确率。
本研究通过开发一种混合垃圾邮件过滤模型,填补了理论和应用方面的空白。该模型将随机森林分类器的稳健性与神经网络的复杂模式识别能力以及朴素贝叶斯的概率推理相结合,以增强数据安全和网络分析能力。我们重申垃圾邮件过滤在应对网络安全挑战中的重要性,并强调现有技术的优势和局限性;并论证了强大的垃圾邮件过滤系统在应对日益演变的垃圾邮件威胁方面的重要性。在初步评估的六种预测方法中,随机森林 (RF) 分类器被评为最有效的模型,其最高准确率达到 95.87%,最低误分类错误率仅为 4.13%,并且在识别真阳性和真阴性方面表现均衡。随机森林、神经网络和朴素贝叶斯算法的混合使用进一步将准确率提升至 97.22%。关键词:随机森林分类器、垃圾邮件过滤、支持向量机、决策树、朴素贝叶斯、神经网络、网络分析
图1 五种机器学习算法在训练集上的预测结果注:SVM:支持向量机算法,CTree:条件推理树算法,Decision_tree:决策树算法,Naive_Bayes:朴素贝叶斯算法,Random_Forest:
本研究旨在利用“肺癌预测”数据集,分析三种分类模型(决策树分类器、支持向量机和朴素贝叶斯分类器)在预测肺癌方面的表现。所采用的性能评估指标包括准确率、精确率加权、召回率加权和 F1 加权。作为初步步骤,进行了探索性数据分析 (EDA) 和数据集预处理,包括特征选择、数据清理和数据转换。测试数据结果显示,决策树分类器和朴素贝叶斯分类器具有相似的性能,准确率、精确率、召回率和 F1 值都很高。同时,支持向量机也表现出了竞争力,尽管其精确率加权值略低。此外,使用箱线图进行了异常值分析,结果显示决策树分类器有 2 个异常值,而支持向量机有 4 个异常值,朴素贝叶斯没有异常值。总而言之,这三种分类模型在肺癌预测中都表现出良好的潜力。然而,选择最佳模型需要考虑应用的相关评估指标,并考虑到每个模型的局限性。需要进一步评估和深入分析,以确保模型在更准确和一致地预测肺癌病例方面的可靠性。
随着高速网络的不断扩展,实时网络检测应用面临着漏洞威胁。对于公司和 ISP 来说,实时流量分类是一个问题。分类器监视器由三个模块组成:数据包捕获 (CoP) 和预处理、流量协调 (RoF) 和机器学习 (ML) 分类。基于并行处理以及明确定义的数据接口,模块被构建,允许每个模块单独修改和升级。流量协调 (RoF) 机制成为此管道中的输出瓶颈。在此实现中,使用了最佳协调过程,平均交付时间为 0.62 秒。为了验证该方法,作者在分类模块中将 AdaBoost 集成学习算法 (ABELA)、朴素贝叶斯 (NB)、决策树 (DT)、K 最近邻 (KNN) 和灵活朴素贝叶斯 (FNB) 的结果等同起来。本文介绍了运行时CSNTA分类(基于流)方案的架构设计。
计算机科学系弗吉尼亚理工大学,弗吉尼亚州,美国摘要——“除非我们的社会认识到网络欺凌的本质,否则成千上万的沉默受害者将继续遭受痛苦。”~安娜玛丽亚查韦斯。关于网络欺凌的研究已经有很多,但都无法提供可靠的解决方案。在这项研究工作中,我们开发了一个能够以 92% 的准确率检测和拦截欺凌传入和传出消息的模型,从而为这一问题提供了永久的解决方案。我们还开发了一个聊天机器人自动化消息系统来测试我们的模型,从而开发了人工智能驱动的反网络欺凌系统,使用多项式朴素贝叶斯 (MNB) 和优化的线性支持向量机 (SVM) 的机器学习算法。我们的模型能够检测和拦截欺凌的传入和传出欺凌消息并立即采取行动。
支持的 ML 算法包括:1. 监督/分类 - AdaBoost、卷积神经网络 (CNN)、决策树、广义线性模型 (GLM)、K-最近邻 (KNN)、逻辑回归、多层感知器 (MLP)、朴素贝叶斯、随机森林、循环神经网络 (RNN)、支持向量回归 (SVM)、XGBoost。2. 监督/回归 - AdaBoost、卷积神经网络 (CNN)、决策树、广义线性模型 (GLM)、K-最近邻 (KNN)、线性回归、多层感知器 (MLP)、朴素贝叶斯、随机森林、循环神经网络 (RNN)、支持向量回归 (SVM)、XGBoost。 3. 时间序列/预测 - 自回归综合移动平均线 (ARIMA)、长短期记忆 (LSTM)、Prophet、Seq2Seq、时间卷积网络 (TCN)、NBeats、Autoformer、TCMF。4. 时间序列/异常 - 自动编码器、DBSCAN、椭圆包络、孤立森林、K-Means、一类 SVM。
对于其他机器学习模型,朴素贝叶斯的准确率达到 68.62%,而 SVM(支持向量机)的准确率达到 60.78%。同样,决策树模型的准确率也达到 68.62%。另一种集成技术 Bagging 的准确率达到 66.66%。有趣的是,结合预训练的 VGG-16 和 InceptionV3 模型的混合模型的准确率达到 68.92%。结果表明,卷积神经网络 (CNN) 是最成功的方法,在 MRI 扫描中实现脑肿瘤检测的最高准确率(86.27%)。这表明 CNN 特别擅长学习隐藏在 MRI 图像数据中的关键模式。关键词:磁共振成像 (MRI)、深度学习、卷积神经网络 (CNN)、多层感知器 (MLP)、迁移学习、InceptionV3、特征提取、主成分分析 (PCA)、准确度、VGG16、逻辑回归、随机森林、Ada Boosting、朴素贝叶斯、SVM、决策树、Bagging