近年来,化学和凝聚态材料的模拟已成为量子计算的一项重要应用,为某些强关联电子系统的电子结构求解提供了指数级加速。迄今为止,大多数处理方法都忽略了这样一个问题:相对论效应(最常由量子电动力学 (QED) 描述)是否也可以在多项式时间内在量子计算机上模拟。本文我们表明,在合理假设下,在正确处理费米子场波函数的所有四个分量的情况下,等效 QED(相当于微扰理论中的二阶 QED)可以在多项式时间内模拟。特别是,我们使用 Trotter-Suzuki 公式对位置和动量基础上的此类模拟进行了详细分析。我们发现,在 ns 位点的 3D 晶格上执行此类模拟所需的 T 门数量在最坏情况下缩放为 O ( n 3 s /ϵ ) 1+ o (1)(对于位置基础模拟,在热力学极限下),在动量基础上缩放为 O ( n 4+2 / 3 s /ϵ ) 1+ o (1)。我们还发现,量子比特化的缩放效果略好一些,对于晶格 eQED,最坏情况缩放为 e O ( n 2+2 / 3 s /ϵ ),而准备电路的复杂性导致动量基础上的缩放效果略差,为 e O ( n 5+2 / 3 s /ϵ )。我们进一步提供了用于模拟均匀电子气的相对论版本的具体门数,表明可以使用少于 10 13 个非 Clifford 操作模拟具有挑战性的问题,并详细讨论了如何在有效 QED 中准备多参考配置交互状态,这可以为基态提供合理的初始猜测。最后,我们估计了准确模拟金等重元素所需的平面波截止。
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
地图应用程序,乘客可以在此接收有关当前航线的信息。重点是探索移动增强现实在乘客自己的设备上运行的地图应用程序中的适用性。为了提供评估基础,开发了同一原型的三个版本,以测试不同类型的用户输入,以获得最简单、最舒适的用户体验。此外,根据测试对象对最积极的感知用户交互类型的反应,开发了一个完整的原型,模仿机上地图应用程序的真实功能。在此过程中,在原型的每次迭代中都实践了以用户为中心的设计方法,该方法基于以用户为中心的设计,包括用户性能测试和访谈。此外,采用了迭代过程,以进一步改进原型的每次迭代。
2002 年,欧盟颁布了一项指令(欧盟指令 2002/95/EC),要求 2006 年 7 月 1 日后投放市场的新电气和电子设备及系统不得含有铅 (Pb) 或其他对环境有害的物质。铅被用作分立电气和电子元件的表面镀层,用于焊接目的(例如锡/铅焊料合金),包括集成电路、半导体、电容器、电阻器和其他电子电路,广泛应用于飞机或飞机设备上。迄今为止,没有一种无铅合金可以完全替代过去 50 多年来在电子电气行业广泛使用的锡铅 Sn-Pb 共晶合金。许多提议的替代材料的熔点高于当前的共晶锡铅,而一些低温材料将无法承受极端的航空航天操作环境。无铅焊料和涂层可能会降低系统或子系统的可靠性。以下因素可能会影响安全性和系统性能:
请注意以下几点: 版权所有者有权对侵犯其版权的人采取法律行动。 复制受版权保护的材料可能构成版权侵权。如果复制此类材料时未注明作者、虚假注明作者或以贬损的方式对待作者,则可能违反《1968 年联邦版权法》第 IX 部分所规定的作者道德权利。 法院有权对《1968 年联邦版权法》规定的侵犯版权、侵犯道德权利和其他违法行为施加广泛的民事和刑事制裁。对于涉及将材料转换为数字或电子形式的违法行为和侵权行为,可能会施加更严厉的处罚,并可能判处更高的赔偿金。
摘要。轨道制造受到空间微重力,高真空,较大温度变化,强辐射和其他环境因素的影响,这也为适合在轨道上制造的材料和过程方法提出了新的要求。本文总结了不同学者对轨道制造的材料和技术的当前研究状态。分析了机上制造的主要应用方案和要求。分析了不同应用要求下的技术能力要求。然后根据材料来源,材料的使用和制造性,建立了轨内生产的材料系统。根据不同的技术要求,建立了机上制造的制造技术系统。从材料和技术的角度来看,提出了在轨道上制造中应破坏的关键技术方向。它可以为随后的有关轨道制造的材料和过程技术的研究提供参考。
光子器件的建模传统上涉及求解光与物质相互作用和光传播方程。在这里,我们通过使用量子计算机重现光学器件功能来演示一种替代建模方法。作为说明,我们模拟了光在薄吸收膜上的量子干涉。这种干涉可以导致光在薄膜上完全吸收或完全透射,这种现象引起了经典和量子信息网络中数据处理应用的关注。我们将干涉实验中光子的行为映射到 transmon 量子态的演化,transmon 是 IBM 量子计算机的超导电荷量子位。真实光学实验的细节在量子计算机上完美再现。我们认为,这种方法的优越性将在复杂的多光子光学现象和器件建模中得到体现。
驱动的多体问题仍然是量子力学中最具挑战性的未解决问题之一。量子计算机的出现可能为有效模拟此类驱动的系统提供了独特的平台。但是,对于如何设计水库有很多选择。可以简单地用Ancilla Qubits充当储层,然后通过算法冷却进行数字模拟。一种更具吸引力的方法,它允许人们模拟有限的储层,它是整合自由度的浴室,并通过主方程来描述驱动的散文系统,该系统也可以在量子计算机上进行模拟。在这项工作中,我们考虑了由电场驱动并耦合到费米子恒温器的晶格上的非相互作用电子的特殊情况。然后,我们提供两个不同的量子电路:第一个使用Trotter步骤重建系统的完整动力学,而第二个则在单个步骤中消散了最终的非平衡稳态。我们在IBM量子体验上运行两个电路。对于电路(i),我们最多达到了5个trotter步骤。当部分重置在量子计算机上可用时,我们希望最大的模拟时间可以显着增加。此处开发的方法提出了可以应用于模拟相互作用驱动的系统的概括。
有限的量子存储器是近期量子设备的最重要约束之一。了解小量子计算机是否可以模拟较大的量子系统,或者执行需要比可用的量子更多的量子的算法,这既是理论上的重要性,又是实际的重要性。在这封信中,我们引入了量子电路的群集参数K和D。这种电路的张量网络最多可以分解为d的群集,其中最多只能使用集群间量子通信。我们提出了一个可以模拟任何ðk的群集模拟方案; d - d -Qubit机器上的聚集量子电路的时间大约为2oðkÞ,在考虑更多细粒电路结构时,可能会进一步加速。我们展示了如何使用我们的方案来模拟聚类的量子系统(例如大分子),这些系统可以分为多个显着较小的群集,它们之间的相互作用较弱。通过使用合适的聚类ANSATZ,我们还通过实验表明,量子变异的特征索仍然可以实现所需的性能,以估算Beh 2分子的能量,同时在物理量子设备上运行,而所需码头的数量为一半。