近年来,量子机器学习在理论和实践方面取得了长足的发展,已成为量子计算机在现实世界中应用的有希望的领域。为了实现这一目标,我们结合了最先进的算法和量子硬件,为量子机器学习应用提供了实验演示,并可证明其性能和效率。具体来说,我们设计了一个量子最近质心分类器,使用将经典数据高效加载到量子态并执行距离估计的技术,并在 11 量子比特离子阱量子机上进行了实验演示,其准确度与经典最近质心分类器的准确度相当,可用于 MNIST 手写数字数据集,并可实现 8 维合成数据的准确度高达 100%。
普通语言摘要巨噬细胞是源自血液中单核细胞的先天免疫系统的重要组成部分,并有助于宿主的炎症和肿瘤发育。巨噬细胞经常转化为肿瘤微环境中与肿瘤相关的巨噬细胞(TAM),这不仅促进了肿瘤的生长和转移,而且还导致对化学疗法和免疫疗法的抗性,从而使巨噬细胞具有吸引人的巨噬细胞,以吸引肿瘤学的组合疗法。巨噬细胞重编程是指通过改变其功能和表型来调节其在免疫反应和肿瘤微环境中的作用,并涉及多种机制,包括经典的M1/M2极化,代谢重新编程,表观遗传调节,表观遗传调节,途径调节,路径调节和肿瘤微观环境中的路径调节。在这里,我们回顾了肿瘤中巨噬细胞极化和治疗的最新研究,巨噬细胞重编程的不同机制,并展望巨噬细胞重编程的未来。
量子计算最有前途的应用集中在解决搜索和优化任务上,特别是在物理模拟、量子化学和金融等领域。然而,目前的量子软件测试方法在工业环境中应用时面临实际限制:(i)它们不适用于与行业最相关的量子程序,(ii)它们需要完整的程序规范,而这些程序通常无法获得,(iii)它们与 IBM 等主要行业参与者目前采用的错误缓解方法不兼容。为了应对这些挑战,我们提出了一种新颖的量子软件测试方法 QOPS。QOPS 引入了一种基于 Pauli 字符串的测试用例的新定义,以提高与不同量子程序的兼容性。QOPS 还引入了一种新的测试 oracle,它可以直接与 IBM 的 Estimator API 等工业 API 集成,并可以利用错误缓解方法在真实的噪声量子计算机上进行测试。我们还利用泡利弦的交换特性放宽了对完整程序规范的要求,使 QOPS 可用于在工业环境中测试复杂的量子程序。我们对 194,982 个真实量子程序进行了 QOPS 实证评估,与最先进的程序相比,它在测试评估中表现出色,F1 分数、准确率和召回率都堪称完美。此外,我们通过评估 QOPS 在 IBM 的三台真实量子计算机上的性能来验证其工业适用性,结合了工业和开源错误缓解方法。
现代科学和社会中大多数问题的极端复杂性对我们最好的理论和计算方法提出了非常巨大的挑战。作为一个例子,即使是最强大的超级计算机,也可以基于流动运动方程的直接模拟来预测行星尺度上天气的任务前面的Exascale操作(每秒10亿个流量点操作)。此外,这个和类似的问题通常受到影响解决方案的初始数据和其他参数引起的各种不确定性来源。因此,每个案例研究都需要几个实现,以积累足够的统计信息(集合模拟),从而进一步加强了对计算能力的追求。鉴于电子计算机面临着非常严格的能量限制,因此不断寻求替代模拟策略。在过去的十年中,巨大的效果已经专门用于量子计算机的开发,使用能够利用量子系统同时占据众多状态的硬件设备(量子纠缠)。直接优势是,量子系统原则上可以执行多种并行量子计算,而不是只能在二元状态下运行的经典计算机(位)。最近,没有一天没有
经典对称加密算法使用共享密钥的 N 位,以信息理论上安全的方式通过单向信道传输消息的 N 位。本文提出了一种混合量子-经典对称密码系统,该系统使用量子计算机生成密钥。该算法利用量子电路使用一次性密码本类型的技术加密消息,同时需要更短的经典密钥。我们表明,对于 N 量子比特电路,指定量子电路所需的最大位数以 N 3 / 2 增长,而量子电路可以编码的最大位数以 N 2 增长。我们没有充分利用量子电路的全部表达能力,因为我们只关注二阶泡利期望值。使用更高阶的泡利期望值可以编码指数数量的位数。此外,使用参数化量子电路 (PQC),我们可以通过引入对某些 PQC 参数的密钥依赖性来进一步增加安全共享信息的数量。该算法可能适用于早期容错量子计算机实现,因为可以容忍一定程度的噪声。模拟结果与 84 量子比特 Rigetti Ankaa-2 量子计算机上的实验结果一起呈现。
用于数据库和数据管理的量子计算是一个新兴的研究领域,近年来取得了长足的发展 [35,46]。该领域旨在满足对更复杂的优化方法的需求,这些方法至关重要,因为数据量和复杂性继续以越来越快的速度增长。该领域的主要愿景是未来数据库的优化可能部分在量子计算机上进行。之前的大部分研究集中于利用各种二次无约束二元优化公式来优化关系数据库 [4、11、15、17、25、33、34、36、37、44、45、49、53]。第二种最常见的量子计算方法是用量子机器学习来解决数据库问题 [18、19、47、51、52]。尽管关系数据库中的许多优化问题从根本上来说都是图问题(例如,连接顺序选择),但该领域中图算法的全部功能尚未得到充分研究。为了对量子计算中现有的图算法进行更系统的研究和基准测试,
隐私增强技术不仅必须在传播中保护敏感的数据,而且还必须在本地限制。例如,匿名网络隐藏了网络对手的消息的发送者和/或收件人。但是,如果实际捕获了参与设备,则可以向其所有者施加压力以访问存储的对话。因此,客户端软件应允许用户合理地否认存在有意义的数据。由于可以在未经同意和基于服务器的身份验证泄漏元数据的情况下收集生物识别技术,因此实现通常依赖于令人难忘的通行单词进行本地身份验证。传统的基于密码的密钥拉伸缺乏严格的时间保证,因为攻击者的平行密码猜测便利。本文引入了懒惰,这是一种关键拉伸方法,利用现代智能手机中常见的安全元素(SE),以对密码猜测提供严格的速率限制。虽然这将很简单,但可以完全访问SE,但Android和iOS仅提供非常有限的API。懒惰利用现有的开发人员SE API和新颖的加密结构来建立有效的速率限制,以对最近的Android和iOS设备进行密码猜测。我们的方法还可以确保在短,随机生成的,六个字符的alpha数字密码中针对具有几乎无限计算资源的对手。我们的解决方案与大约96%的iPhone兼容,而45%的Android手机和懒惰无缝集成而没有设备或操作系统修改,从而使其立即由App Developers立即使用。我们正式定义了懒惰的安全性并评估其在各种设备上的性能。最后,我们提出了Hiddensloth,这是一种利用懒惰的可能性的加密方案。它为对手提供了多次击打的阻力,这些对手可以多次掩盖其磁盘含量。
摘要:随着量子计算的进步,人们进行了广泛的研究以寻找密码学领域的量子优势。将量子算法与经典密码分析方法(如差分密码分析和线性密码分析)相结合,有可能降低复杂性。在本文中,我们提出了一种用于差分密码分析的量子差分查找电路。在我们的量子电路中,明文和输入差分都处于叠加态。实际上,虽然我们的方法无法通过量子计算实现直接加速,但它通过依赖叠加态中的量子概率提供了不同的视角。对于量子模拟,考虑到量子比特的数量有限,我们通过实现 Toy-ASCON 量子电路来模拟我们的量子电路。
摘要:研究化学反应,特别是气相化学反应,很大程度上依赖于计算散射矩阵元素。这些元素对于表征分子反应和准确确定反应概率至关重要。然而,量子相互作用的复杂性带来了挑战,需要使用先进的数学模型和计算方法来应对固有的复杂性。在本研究中,我们开发并应用了一种量子计算算法来计算散射矩阵元素。在我们的方法中,我们采用基于 Møller 算子公式的时间相关方法,其中反应物和产物通道之间的 S 矩阵元素通过反应物和产物 Møller 波包的时间相关函数确定。我们成功地将我们的量子算法应用于计算一维半无限方阱势和共线氢交换反应的散射矩阵元素。随着我们探索量子相互作用的复杂性,这种量子算法具有通用性,并成为一种有前途的途径,为在量子计算机上模拟化学反应提供了新的可能性。
1 Fondazione Policlinico Universitorio Campus Bio-Medico,经Alvaro del Portillo,200,意大利罗马00128; g.longo@policlinicocampus.it(U.G.L.); albertolalli30@gmail.com(A.L.); benedettabandini.000@gmail.com(B.B.)2校园和创伤外科研究部门,医学与外科系,校园Bio-Medico di Roma,经Alvaro del Portillo,21,00128,00128,ROMA,ROMA,ITALY 3胃肠病学,内窥镜检查,IRCCS Humanitas Research Hospital,IRCCS Humanitas Research Hospital,20089 Rozzano,20089年Rozzano,Italy italy,Italy; roberto.desire@libero.it 4胃肠病学部门,临床医学与外科系,那不勒斯大学费德里科二世,意大利80126那不勒斯5号临床实验室科学科学单位,罗马,00128,罗马,00128罗马,00128; s.angeletti@unicampus.it 6骨科部,里昂北大学医院,h'how pital de la croix rousse,Hospices Civils de Lyon,103 Grande Rue de la Croix Rousse,69004,法国里昂69004; sebastien.lustig@gmail.com 7医学和外科科学系,Catanzaro大学“ Magna Graecia”,意大利Catanzaro 88100; ammendolia@unicz.it 8肌肉骨骼健康研究中心,Musculoskeletalhealth@UMG,UMG,Catanzaro University of Catanzaro“ Magna Graecia”,88100年,意大利Catanzaro,意大利9号,993333 Leiden,Nerlands,2333 Leiden; n.c.budhiparama@gmail.com *通信:alessandro.desire@unicz.it2校园和创伤外科研究部门,医学与外科系,校园Bio-Medico di Roma,经Alvaro del Portillo,21,00128,00128,ROMA,ROMA,ITALY 3胃肠病学,内窥镜检查,IRCCS Humanitas Research Hospital,IRCCS Humanitas Research Hospital,20089 Rozzano,20089年Rozzano,Italy italy,Italy; roberto.desire@libero.it 4胃肠病学部门,临床医学与外科系,那不勒斯大学费德里科二世,意大利80126那不勒斯5号临床实验室科学科学单位,罗马,00128,罗马,00128罗马,00128; s.angeletti@unicampus.it 6骨科部,里昂北大学医院,h'how pital de la croix rousse,Hospices Civils de Lyon,103 Grande Rue de la Croix Rousse,69004,法国里昂69004; sebastien.lustig@gmail.com 7医学和外科科学系,Catanzaro大学“ Magna Graecia”,意大利Catanzaro 88100; ammendolia@unicz.it 8肌肉骨骼健康研究中心,Musculoskeletalhealth@UMG,UMG,Catanzaro University of Catanzaro“ Magna Graecia”,88100年,意大利Catanzaro,意大利9号,993333 Leiden,Nerlands,2333 Leiden; n.c.budhiparama@gmail.com *通信:alessandro.desire@unicz.it