解决错误的战略问题,有时被称为III型错误,是组织中常见且昂贵的事件。不幸的是,Little Research提供了基于理论的机制来减少III型错误的可能性,这是一个规范的战略管理问题。在响应中,本文开发了一个新的理论框架,借鉴了多个学科,以假设III型错误可能在战略环境中发生时假设。它制定了从我们的假设衍生出的三个标准到规范性地设计协议机制,以减少III型错误的可能性。然后,我们提供了满足这些条件并提供案例研究的协议,以阐明如何使用该协议,并说明其减少III型错误的潜力。总而言之,本文提供了对“解决正确的战略问题”的个体障碍的第一个理论评估,以及未来理论和经验研究的机制和相关条件。
简介 1912 年,人们偶然发现了苯巴比妥的抗惊厥特性,这为现代癫痫药物治疗奠定了基础。随后的 70 年里,苯妥英、乙琥胺、卡马西平、丙戊酸钠和一系列苯二氮卓类药物相继问世。这些药物被统称为“公认的”抗癫痫药物 (AED)。20 世纪 80 年代和 90 年代,癫痫药物的协同开发已导致(迄今为止)16 种新药物被批准作为难控成人和/或儿童癫痫的辅助治疗,其中一些药物可作为新诊断患者的单一疗法。这些药物被统称为“现代”AED。在这一前所未有的药物开发时期,我们对抗癫痫药物如何在细胞水平上发挥作用的理解也取得了长足的进步。抗癫痫药物既不能预防也不能治疗,仅用于控制症状(即抑制癫痫发作)。反复发作的癫痫是神经系统间歇性和过度兴奋的表现,虽然目前市场上销售的抗癫痫药物的药理学细节仍未完全阐明,但这些药物基本上可以纠正神经元兴奋和抑制之间的平衡。人们认识到三种主要机制:调节电压门控离子通道;增强γ-氨基丁酸 (GABA) 介导的抑制性神经传递;减弱谷氨酸介导的兴奋性神经传递。表 1 重点介绍了目前可用的抗癫痫药物的主要药理学靶点,并在下文进一步讨论。当前抗癫痫药物靶点电压门控钠通道电压门控钠通道负责神经细胞膜的去极化和动作电位在神经元细胞表面的传导。它们在整个神经元膜、树突、胞体、轴突和神经末梢上表达。在产生动作电位的轴突起始段 (AIS) 中表达密度最高。钠通道属于电压门控通道超家族,由多个蛋白质亚基组成,在膜上形成离子选择性孔。天然钠通道由单个 α 亚基蛋白组成,该蛋白包含成孔区和电压传感器,与一个或多个辅助 β 亚基蛋白相关,这些辅助 β 亚基蛋白可以改变 α 亚基的功能,但对基本通道活动并非必不可少。哺乳动物脑中表达四种主要的钠通道 α 亚基基因,分别表示为 SCN1A、SCN2A、SCN3A 和 SCN8A,它们分别编码通道 Na v 1.1、Na v 1.2、Na v 1.3 和 Na v 1.6。这些通道在神经系统中的表达存在差异。Na v 1。3 的表达主要局限于发育早期阶段,而 Na v 1.1 是抑制性中间神经元的主要钠通道,Na v 1.2 和 Na v 1.6 在主要兴奋性神经元的 AIS 中表达。Na v 1.2 似乎
摘要 成簇的规律间隔的短回文重复序列 (CRISPR) 的字面定义是成簇的规律间隔的短回文重复序列,是细菌的一种适应性免疫系统,使它们能够检测和破坏病毒的 DNA。事实上,CRISPR 是原核细胞的一种防御机制,它诱导对外来遗传内容的抵抗力,例如在质粒或噬菌体中发现的遗传内容。参与这一机制的蛋白质被称为 CRISPR 相关蛋白 (CAS),它们能够以特定方式搜索、切割并最终转化噬菌体 DNA。CAS 是一种具有酶功能的蛋白质,由于它在 DNA 序列和 CRISPR 阵列中起着特殊的作用,因此可以称为核酸酶。CRISPR 技术允许改变 DNA,从而能够修改和改变任何生物体的任何基因,比所有以前的方法都更准确、更好。在本综述中,我们介绍了 CRISPR 在基因组编辑中的机制和优势,简要回顾了 CRISPR 在基因治疗探索中的应用以及 CRISPR 通过不同修复机制产生不同类型突变的能力。关键词:CRISPR、CAS 蛋白、间隔物、Proto-SPACER、直接重复引文:Mohamadi S、Zaker Bostanabad S、Mirnejad R。CRISPR 阵列:对其机制的综述。J Appl Biotechnol Rep. 2020;7(2):81-86。doi: 10.30491/JABR.2020.109380。
5. 采购流程 ................................................................................................................................ 14 5.1 招标 .............................................................................................................................. 14 5.2 投标结构 .............................................................................................................................. 14 5.3 选择 .............................................................................................................................. 15 5.3.1 选择方法 - 短缺 ............................................................................................. 15 5.3.2 选择方法 - 低效定价 ............................................................................. 16 5.3.3 授予通知 ............................................................................................................. 16 5.4 ERA 授予否决权 ............................................................................................................. 16 5.5 通知 ............................................................................................................................. 17 5.6 特别工作组设计决策 - 采购 ............................................................................................. 17
目录 摘要 5 致谢 6 缩写 7 第 1 章:引言 8 1.1 研究背景 8 1.1.1 世界贸易组织 8 1.1.2 国际法院 10 1.2 研究目标 12 1.3 论文组织 16 第 2 章:国际法中的争端解决方法 18 2.1 引言 18 2.2 谈判 19 2.3 调查和事实查明 24 2.4 调解和斡旋 29 2.5 和解 35 2.6 仲裁 42 2.7 每种争端解决形式的相对优点及其未来潜力 48 2.7.1 谈判 48 2.7.2 调解;斡旋;调查和事实认定 48 2.7.3 和解;调解;仲裁 50 2.7.4 仲裁 52 2.7.5 比较讨论 53 2.7.6 未来潜力 54
摘要:本文对与电池相关的性能降低进行了批判性分析,特别是焦点是锂离子(Li-ion)技术。在此框架内,它阐明了四种主要的机制,这些机制会随着时间的推移逐渐下降的电池性能逐渐下降:(1)固体锂的沉积; (2)被动膜的形成; (3)裂缝的发展和传播; (4)电解质内活性材料的溶解。在整个电池系统的更广泛背景下,全面研究了这些机制中的每种机制,突出了各种过程中各个过程之间的复杂相互作用。讨论强调了电池性能的退化不仅是一种线性现象,而且是多种因素的复杂相互作用,无论是统计和随机的。这种固有的复杂性提出了对电池行为的准确建模和在其操作寿命中的预测的重大挑战。通过对这些降解机制进行彻底探索,本文旨在增强对导致电池性能降低的基础过程的理解,从而为电动汽车电池技术领域的未来研究和开发工作提供了信息。这些发现还强调了需要充分捕获电池降解的多方面性质的复杂建模方法的必要性。此类模型将在本文的第二部分中讨论。钥匙词:电动,车辆,电池。但是,复杂和1.引言电动汽车(EV)的快速开发已导致对电池性能的监测和管理进行了重大研究,尤其是在估计充电状态(SOC)和评估电池降解方面。这些参数对于确保电池系统的效率,寿命和安全性至关重要。充电状态提供了有关电池剩余能力的基本信息,而降解评估有助于预测其寿命和随着时间的推移的寿命和性能。对SOC和降解的准确估计对于电池管理系统(BMS)是必不可少的,并且电动移动性和能源存储系统的更广泛成功。
嵌合抗原受体(CAR)T细胞疗法对复发或难治性B细胞急性淋巴细胞性白血病,大B-细胞淋巴瘤,卵泡淋巴瘤,地幔细胞淋巴瘤和多发性骨髓瘤的患者的治疗结果显着改善。尽管效率前所未有,但使用CAR T细胞疗法的治疗可能会引起多种不良反应,这需要在专业中心进行监测和管理,并导致发病率和非释放死亡率。这种毒性包括细胞因子释放综合征,免疫效应细胞相关的神经毒性综合征,不同于ICAN的神经毒性,免疫效应细胞相关的细胞相关胞淋巴细胞淋巴细胞增多症以及免疫效应的血液毒性的替代性的替代性的替代性的替代性替代性的替代性的替代性的替代性的替代性的替代性。本综述将讨论对潜在的病理生理机制的当前理解,并为这种毒性的评分和管理提供指南。
1坎皮纳斯大学(UNICAMP)的电气和计算机工程学院,Campinas 13083-852,巴西; carlos.rufino@carissma.eu(C.A.R.J.); m228835@dac.unicamp.br(M.M.A.)2在生物能源(USP/UNICAMP/UNESP)的机构间研究生课程,Cora Coralina街330号,CIDADE UNIVERSITÁRIA,CAMPINAS 13083-896,巴西3 Carissma Electric,Connectuction of Electric,Connected and Secutect and Secure Ebsibility and Secure Ebsibility(C-Ecos),TechnIsche Hochsche Hochschulany Ingololstadt,85049949999999.850499499999949949999.850949999994999.850499999996号。 daniel.koch@carissma.eu(D.K.); yash.kotak@carissma.eu(y.k。); sergej.diel@thi.de(s.d.); gero.walter@carissma.eu(g.w.); Hans-Georg.schweiger@thi.de(H.-G.S.)4巴勒莫大学(UNIPA)工程系,意大利巴勒莫90128; eleonora.rivasanseverino@community.unipa.it(E.R.S.); pierluigi.gallo@unipa.it(p.g.)5 Consorzio Nazionale Interuniversitario per le Telecomunicazioni(CNIT),43124意大利帕尔马 *通信:hzanin@unicamp.br
简介:淡水和海洋栖息地是非均质环境,营养浓度在时间和时间之间波动。ixotromophy已被提议作为细菌菌株中细菌菌株的预数据策略,以访问在活微生物中结合的底物。已知的依氧化菌具有丝状,就像蝇纸一样,它们会捕获猎物细胞并将其粘在细胞表面上。猎物细胞的鞭毛已被重新输送在这种捕获行为中发挥作用,其次是猎物细胞裂解。一些ixo-营养性捕食者包含杆状颗粒,称为“ rapidosomes。”这些与收缩注入系统(CISS)共享结构相似性,它们是已知可以介导细菌拮抗作用的大分子注射。
代谢疾病及其并发症在全球造成健康和经济负担。过去的实验研究和临床试验的证据表明,我们的身体可能具有记住过去的代谢环境,例如高血糖或高脂血症,从而导致慢性炎症性疾病和其他疾病,即使消除了这些代谢环境。这种异常代谢对人体的长期作用总结为代谢记忆,并被发现在健康和疾病状态中起着至关重要的作用。多种分子机制共同参与代谢记忆管理,导致不同的细胞改变以及组织和器官功能障碍,最终导致疾病进展,甚至影响后代。阐明和扩展代谢记忆的概念提供了对代谢性疾病和并发症基础的致病机制的更全面的见解,并有望成为疾病检测和管理方面的新目标。在这里,我们回顾了有关代谢记忆的相关研究历史,并总结了其显着特征。我们提供了有关在分子,细胞和器官水平上可能与疾病发展有关的机制的详细讨论,并着重于表观遗传调节的影响。最后,我们提出了一些关键发现,主张靶向代谢记忆来制定代谢疾病的治疗策略,并为代谢记忆的后果及其对人类健康和疾病的影响提供最新的反思。