Richard J. Macke 佐治亚理工学院:航空航天工程学院 摘要 近年来,随着太空中物体数量的增加,合相警告的数量也显著增加。然而,尚未出台管理或协调对这些警告的响应的正式指导方针。随着全球的工业和政府机构都试图利用各种大型卫星星座来利用近地空间环境,预计未来十年驻留空间物体 (RSO) 的总数将增加五倍,预计将有超过 20,000 颗新的低地球轨道 (LEO) 和中地球轨道 (MEO) 卫星被发射到轨道上。预计这将导致潜在合相的数量进一步增加。虽然任务运营商努力确保所有卫星都能正常运行,但这些卫星中仍有一定比例会过早失效,从而产生可能在轨道上停留数年或数十年的不活跃 RSO,造成无法机动的额外危险。虽然已经制定了卫星寿命结束后预期脱轨时间表的指导方针,例如 25 年,但仍然没有正式或广泛接受的机动指导方针来确保未来拥挤的 LEO 和 MEO 环境能够得到有效管理。如果预测到会合,当前系统依靠卫星运营商独立行动,无需采取行动或与其他运营商或机构协调。如果制定并采用一套正式的机动指南,那么假设太空环境可以得到很好的管理,并能够维持新卫星的当前增长模式。这引出了一些问题:应该采用哪些指导方针、如何实施这些指导方针以及如何执行或监控这些指导方针。为了开始解决这些问题,本研究旨在探索未来太空交通管理 (STM) 政策中实施各种“交通规则”将产生的影响。我们开发了一个强大的模拟环境,其中包括当前的 RSO 目录并实时传播,以评估预测碰撞的频率和情况(主动与被动物体、小物体与大物体、原产国等)。然后实施了各种防撞指导方针,以评估它们在预测碰撞次数以及其他指标(例如燃料成本)方面的有效性。随着太空中物体数量的增加,意外碰撞的可能性也会增加。模拟参数包括所涉及的卫星数量、机动通知延迟和机动顺从率等。卫星轨道的传播采用了全力模型方法,包括非球形重力、阻力、太阳辐射压力和第三体效应,时间跨度为一个月。虽然在卫星运营商 100% 合规的情况下可以实现活跃卫星之间的碰撞避免,但随着参与度的变化以及通过优先级排序确定机动卫星(例如,优先级较低的卫星在机动中发挥更大的作用)时探索各种场景,情况变得更加微妙。本文概述了评估的模拟环境和指南,以及对建模的政策和场景的相对有效性的初步评估。1.0 简介 经过多年的稳步增长,过去五年中,在轨运行卫星的数量急剧增加,从 2016 年的不到 1,500 颗跃升至 2021 年的 4,000 多颗。随着新的“巨型星座”的发展,预计这种快速增长将持续下去,未来十年将增加约 20,000 颗新卫星。碰撞会损坏或摧毁宝贵的太空资产,导致卫星所有者遭受经济损失,并可能导致
• 需要精确计算行程燃油。燃油价格昂贵。 • 燃油流量与尾部相关,并且是多个参数的函数。 • 飞机性能模型计算燃油流量。 • 最可靠的是制造商模型 • (例如波音性能软件、空客性能工程师计划) • 最可用的是 BADA(根据许可条款),它基于 BPS 和 PEP。
通过高速旅行,随时随地满足用户的需求,提高区域生产力,车辆的安全性、效率、环境和社区友好度以及可负担性与现有运输解决方案相媲美。无论有效载荷是包裹还是人员,随着通用航空的重新发明,以更有意义的方式影响社会,从根本上提高区域生产力,这个市场都将从 sUAS 和其他技术前沿中涌现出来。
2.陆军作战理论出版物 (ADP) 将陆地机动描述为空中机动和地面机动的结合。除了向岸上投送两栖部队之外,空中机动将由陆军发起和控制。空中机动作战为指挥官提供了快速部署轻型部队和支援机械化和装甲地面部队的能力,无论是作为陆地机动的一部分还是作为投送陆地力量的一种手段。无论是在战术上还是在作战上,它都将是一项持久的要求。1 有效运用空中机动需要理解和实践。空中机动也必须在整个联合部队中灌输。
• 缺乏空中优势 • 有争议的通信/网络降级 • 高度机动的战场 • 更致命的战场 • 不断变化的环境(城市、北极、地下等) • 极具挑战性的后勤 • 医疗资产的损耗 • 大量的伤亡(>10,000/60 天)
机动是陆军最常见的作战理论术语之一,但它到底意味着什么?对于陆军使命中如此重要的概念,它值得仔细研究。机动一词在作战理论中的使用范围正在扩大。战争性质的变化激发了陆军作为联合部队的一部分利用新技术进行机动的新作战概念。当代军事领导人和规划人员使用“跨域机动”和“扩展机动”等术语来描述太空、网络空间、电磁频谱 (EMS) 和信息环境等新兴领域和维度中的作战。对于那些熟悉机动的传统应用——陆战——的人来说,这引出了一个问题:我们如何才能像在地面上描述作战一样准确地描述虚拟域中的作战,尤其是在战略层面和整个冲突范围内?虽然为了描述目的而将这些概念进行比较并无不妥,但值得考虑误解这些重要概念的风险。
随着立方体卫星技术在轨测试和实施的日益增多,对高效、低质量推进系统的需求也不断增长。离子推进系统已成为填补立方体卫星推进空白的潜在技术。BeaverCube 是麻省理工学院学生建造的 3U 立方体卫星,将在低地球轨道上进行离子推进系统演示。BeaverCube 计划于 2020 年 10 月之前发射,旨在展示 Accion Systems Inc. 的平铺离子液体电喷雾推进系统。该系统利用离子液体作为推进剂,使 BeaverCube 能够进行高效、低推力机动。成功的系统演示将能够使用 BeaverCube 上的 NovAtel OEM-719 全球定位系统接收器检测平移机动。可探测性要求机动的高度变化至少为 9 米,这比预期的 GPS 高度误差高出 3 个标准差。这项工作的目标是确定平移机动的持续时间,从而产生最高的探测概率,同时产生最小的推力计算误差。根据 Systems Tool Kit 中执行的模拟,确定 3.5 小时的机动是最佳的,导致高度变化为 280.6 米。
具有挑战性的机动,涵盖整个 0 ◦ –360 ◦ 飞行范围。此类 AUV 可受益于海洋生产、环境感知和安全等新用例,通过实现对接、检查或冰下作业的新功能。为了进一步探索它们在这些场景中的能力,必须能够在整个包络线上模拟它们的飞行动力学,其中包括强非线性效应和大攻角下的湍流。利用准确、高效的仿真模型,可以生成新的水上机动并制定控制策略。因此,本文提出了一种实时高效、准确地模拟水上机动的策略。通过结合分析、半经验和数值方法,合成了一个多保真流体动力学数据库,从而捕捉整个包络线上的流体力和力矩。组件构建工作流用于使用从数据库生成的查找表来组装非线性飞行动力学模型。该模拟模型用于执行高级水上机动的实时模拟。模拟结果与文献和实验结果一致,并且模拟器在设计新机动和控制策略时可作为开发工具使用。