I. 资助机会概述 1 A. 必需概述内容 1 1. 机构名称 1 2. 研究机会标题 1 3. 公告类型 1 4. 研究机会编号 1 5. 联邦国内援助目录 (CFDA) 编号和标题 1 6. 回复日期 1 B. 其他概述信息 1 II.有关资助机会的详细信息 3 A. 项目描述 3 1. 概述 3 2. 陆军合成生物学中心 3 3. 超宽带隙 (UWBG) 射频中心 6 4. 能量学基础研究中心 (EBRC) 8 5. 可扩展、自适应和弹性自主性 (SARA) 13 6. 加强团队合作以实现新型群体的稳健作战 (STRONG) 14 7. 陆军人工智能创新研究所 (A2I2) 14 8. 自主机动的战术行为 (TBAM) 15 B. 联邦奖励信息 18 C. 资格信息 20 1. 合格申请人 20 2. 成本分摊或匹配 20 D. 申请和提交信息 21 1. 查看 FOA 的地址 21 2. 白皮书准备和提交 21 3. 提案准备和提交23 4. 唯一实体识别码和奖励管理系统 (SAM) 35 5. 提交日期和时间 36 6. 政府间审查 37 7. 资金限制 37 8. 其他提交要求 37 E. 申请审查信息 38 1. 评估标准 38 2. 审查和选择过程 38 3. 受奖人资格 46 F. 联邦奖励管理信息 48 1. 奖励通知 48 2. 行政和国家政策要求 48 3. 报告 55 G. 机构联系方式 56 H. 其他信息 57
FPO AP 96694-3800 未来的堪萨斯城勇士,欢迎登船,祝贺您最近被任命到海军最好的战舰上!您将加入一支由战士、乘务员和合作伙伴组成的非凡团队。成为一名好合作伙伴的一部分是欢迎团队的新成员 - 我们通过堪萨斯城的赞助计划实现了这一目标。您的赞助商将提供顺畅而愉快的欢迎服务,并能够回答您有关报道的许多问题。他们还可以协助提供有关移动、运输和时间的信息。作为堪萨斯城号战舰的乘务员,我们是第二艘以此命名的美国海军战舰,我们是密苏里州堪萨斯城的同名舰。我们是令人难以置信的遗产的一部分!我们的前任支持沙漠风暴行动,并因救出一艘载有 43 名越南难民的船只而获得人道主义服务奖章。受此传统启发,我们努力让堪萨斯城保持最高准备状态,以便训练和部署濒海战斗舰船员。我们的舰船母港加利福尼亚州圣地亚哥是海军最好的母港之一。我们的母港有很多事情可做,我们将确保您了解舰船在港口时通常停泊的第 32 街海军基地的信息。我们将帮助您将圣地亚哥作为新家。请随时联系我们的监察员 Marissa Conway 女士,电话 (330) 441-9364。您也可以通过以下电子邮件地址联系她:usskansascity.ombudsman@gmail.com 我们的邮寄地址是:USS KANSAS CITY (LCS 22) UNIT 100434 BOX 1 FPO AP 96694-3800 军舰本质上是机动的,这意味着我们的指挥系统可以随时随地命令我们。我们希望您的转移尽可能顺利,因此请在整个过程中与您的赞助商保持联系,以随时了解任何必要的旅行安排。如果您还没有这样做,请立即通过电子邮件 Sponsor@lcs22.navy.mil 联系赞助商协调员以获取任何其他信息。再次祝贺您,欢迎您加入!
摘要 — 快速可靠的优化轨道转移计算方法对于初始阶段的项目至关重要。它们可以对推进子系统(卫星设计的主要组件之一)进行初步的、现实的规模估算。这篇论文由 ReOrbit Oy 完成,提出了一种最短时间的最优轨道,用于将微型卫星从 GTO 轨道提升到 GEO,假设通过电力推进连续发射。根据此模拟得出的 ∆ v 要求,选择合适的电力推进系统,并详细说明其配置在燃料和推力要求方面的设计。这是通过考虑轨道提升带来的主要贡献,以及 10 年寿命期间每天进行两次的轨道机动所产生的附加物,如位置保持修正和反作用轮去饱和。优化方法是低推力轨道机动的直接-间接混合方法,采用庞特里亚金最小原理将其转录为非线性规划问题。利用 Lyapunov 控制理论获得启动优化器所需的初始猜测。实施轨道平均技术,能够在优化过程中快速计算多条轨迹。动态模型包括 J 2 纬向谐波、太阳辐射压力、太阳和月亮的第三体效应以及高达 1500 公里的大气阻力等干扰。利用圆柱形阴影模型评估日食条件,因为在地球阴影中,太阳能电力推进会经历零推力期。电力推进系统配置是通过权衡研究和不同供应商之间的比较来确定的。选定的方案包括 4 个氙气推进器,配备互补的电源处理单元和推进剂管理系统,总转移时间不到 4 个月。通过在 GEO 中改变推进器的配置,转移轨迹和在轨机动都使用相同的推进系统。
本文最初发表于《安全与土地力量杂志》第 1 卷。1 N.° 1 (2022):7 月 - 9 月 DOI:https://doi.org/10.56221/spt.v1i1.7 摘要 俄罗斯与乌克兰之间的战争是克里姆林宫近代史上最重大的挑战之一。毫无疑问,莫斯科权力游戏的主要目标之一是占领其西部边境的地理空间,以击退任何违反其地缘政治利益的行动。俄罗斯使用军事和非军事手段——其行动被定义为“混合战争”——成为对抗西方在其近邻边界任何推进的主要战略。因此,对乌克兰战争的分析不仅要从军事角度进行,还要从传播战略的角度进行,在传播战略中,宣传和虚假信息成为当代战术的有用工具。因此,“混合战争”超越了军事领域,并通过网络空间攻击来破坏政府稳定,就像在乌克兰发生的那样。关键词:美国、常规战争、混合战争、北约、俄罗斯、乌克兰、欧盟。简介 在俄罗斯和乌克兰武装冲突的背景下,混合战争的发展凸显了军事力量和其他手段(如网络攻击)的使用,这破坏了欧洲集体安全并违背了二战后建立的“世界秩序”。从这个意义上说,战略手段的使用有助于威慑和虚假信息,而网络攻击则表明俄罗斯在乌克兰进行军事投射的明确行动轴心。因此,超越常规的新战争形式正在成为21世纪冲突的主要组成部分。俄罗斯的战略思想认为,混合战争是对抗对手、损害其利益的基础或新形式,成为扩大军事机动的主线。毫无疑问,俄罗斯在乌克兰实施的混合战争的目的,超越了常规和非常规手段的融合,寻求避免西方的直接军事对抗。如果——正如克劳塞维茨所说——“战争是政治的延续,
直接聚变驱动器 (DFD) 是一种核聚变发动机,可为任何航天器产生推力和电力。它是一种紧凑型发动机,基于 D-3He 无中子聚变反应,使用普林斯顿场反转配置进行等离子体约束,并使用奇偶校验旋转磁场作为加热方法实现聚变。推进剂是氘,它被聚变产物加热,然后膨胀到磁喷嘴中,产生排气速度和推力。根据任务要求,单个发动机的功率范围可以在 1 - 10 MW 之间,并且能够实现 4 N 至 55 N 的推力,具体取决于所选功率,比冲约为 10 4 s。在这项工作中,我们介绍了使用这种发动机到达和研究太阳系外边界的可能性。目标是在不到 10 年的时间内,携带至少 1000 公斤的有效载荷,前往柯伊伯带及更远的海王星外天体 (TNO),如矮行星鸟神星、阋神星和鸟神星,从而可以执行从科学观测到现场操作等各种任务。所选的每个任务剖面图都尽可能简单,即所谓的推力-滑行-推力剖面图,为此,每个任务分为 3 个阶段:i. 从低地球轨道逃离地球引力的螺旋轨迹;ii. 行星际旅行,从离开影响区到滑行阶段结束;iii. 机动与矮行星会合。图中给出了每次机动的推进剂质量消耗、初始和最终质量、速度和 ∆ V。轨迹分析针对两种情况进行:简化场景,其中 TNO 在黄道平面上没有倾斜,真实场景,其中考虑了真实的倾斜角。此后,研究了多种场景,以达到 125 AU,以便研究太阳磁层的外部边界。我们的计算表明,由 DFD 推进的航天器将在有限的时间内以非常高的有效载荷与推进剂质量比探索太阳系的外部边界,开辟前所未有的可能性。
4 B. Shri Sai Pharm College,Khandala Pharm Student,Khandala摘要:有针对性的交付与受控药物释放相结合在个性化医学的未来功能关键功能。目标药物输送系统是药物输送系统最新的新方法之一。tag污染的药物输送旨在将药物集中在感兴趣的组织中,同时降低药物在最终组织中的相对浓度,从而增强特定地点的治疗指标和生物利用度。纳米颗粒,重新密封的红细胞等。用于提供特定部位的药物输送的目标药物输送系统中。靶向靶向是一种原理,其在生物体中的分布方式是机动的,因此其主要分数仅与细胞和亚细胞的靶组织仅相互作用。本评论涉及目标药物输送系统的优势,缺点,需要的药物输送系统,类型,针对特定器官的药物,例如大脑,肾脏,心脏,结肠和呼吸道以及针对目标药物递送系统的研究更新。可以在此预先递送系统中使用的各种药物载体是脂质体,脂质体,纳米颗粒,单克隆抗体。关键字:污损药物输送系统(TDD),药物载体,脂质体,脂质体,纳米颗粒,血脑屏障(BBB),免疫球蛋白(LG)。简介:靶向药物输送系统(TDDS)是一种智能药物输送系统,在将药物递送给患者方面令人难以置信。这种传统的药物输送系统是通过在生物膜上吸收该药物来完成的。靶向药物输送系统是基于一种方法,该方法可在长时间内提供一定数量的治疗剂,以使其在体内靶向患病的位置。(1)设计有针对性的输送系统的概念起源于微生物学家Paul Ehrlich。开发的药物输送和靶向系统旨在减少药物剥夺并防止危险的副作用,并增强疾病部位的药物可用性。靶向药物输送方法在治疗浓度中在同一治疗浓度中累积了在同一治疗浓度中的积累,从而限制了其进入常规细胞衬里的机会,从而最大程度地减少
摘要 地球同步 (GEO) 轨道区域中的大多数活跃卫星都会执行一致的定位机动,以在其整个运行寿命期间(从入轨到退役)保持在特定的地理纵向位置附近。为了避免由于卫星在物理上以相似的纵向位置彼此靠近运行,同时以相似的无线电频率传播频谱上彼此靠近的信号而导致的拥塞问题(这可能会增加卫星间碰撞或有害无线电频率干扰的威胁),卫星运营商必须在发射前从联合国专门机构国际电信联盟 (ITU) 获得空间网络许可证。自 1971 年以来,国际电信联盟已向卫星运营商授予许可证,允许其从特定轨道位置或以纵向度数衡量的地球静止轨道带的某些部分传播特定频率的信号。尽管 GEO 轨道区域确实很受欢迎,但国际电信联盟授予的空间网络许可证的数量远远超过向该区域发射的实际活跃卫星数量。本研究使用国际电信联盟空间网络列表 (SNL) 和空间网络系统 (SNS) 数据库中的空间网络申报信息以及美国太空军 (USSF) 第 18 空间控制中队 (18 SpCS) 维护并在 Space-Track.org 上公布的空间物体目录中的轨道元素数据,将国际电信联盟空间网络许可证环境与 GEO 中的活跃在轨卫星群进行比较。开发了一种将 GEO 卫星与空间网络许可证相匹配的算法,并将其应用于 2021 年 12 月 31 日之前收到的所有空间网络申报。该算法还针对截至 2022 年 1 月 1 日正在积极执行定位保持机动的所有 GEO 卫星进行了评估,将实际定位保持位置与卫星匹配许可证中规定的标称纵向位置进行比较。本文最后讨论了提交空间网络申请的国际电信联盟各成员国和使用这些申请的空间运营商的选定结果。
X射线Ptychography的未来(一种连贯的衍射成像方法)有望实现的分辨率和实验效率,同时探测了越来越复杂的样品的特征。这是通过复杂的成像方法启用的,结合了高度优化的硬件,软件和过程。在本文中,解决了X射线ptychography实验的几个方面,强调了通过使用多个光束实现的增强的多功能性和有效性。从对纳米化的全面理解开始,讨论了聚焦X射线光学的生产。具体而言,开发了直接作品的岩性过程,并描述了其细节,特别强调了在50 kV加速度电压下在化学上半弹性抗性的情况下进行电子束光刻。此过程既多功能又精确,最终促进了菲涅尔区板(FZP)的制造。因此,论文报告了几个并联的几个FZP的应用,用于生成多个X射线梁以执行Ptychography。特别是研究了对标准Ptychographic方法的新型扩展。对多光束X射线PTYChography的研究始于紧密间隔的FZP,以线性阵列排列在同一芯片上,模拟和推进了先前关于该主题的研究,并证明了自制硬件的准备就绪,以实现更复杂的实现。最值得注意的是,FZP彼此之间的接近48 µm,并且最多可以使用三个梁,从而将视场(FOV)扩展了三倍。接下来,引入了一种新颖的设置,在多光束X射线ptychography的背景下促进了适应性的概念,这要归功于堆叠和机动的FZP。在测量之间将焦点光学元件移动的可能性赋予上述设置前所未有的多功能性。对于实验,样本更改或检测条件的每个新迭代,光学元件不必重新设计。足以使用各自的电机并将设置适应新的测量值。金纳米晶簇用各种梁的间距成像,从而在样品上同样间隔区域进行成像,并将FOV扩展到两个倍。这种设置的成功导致其在更复杂的测量中实现,最终导致表现出同时的多光束和多块Ptychography,这两个从未被放在一起。两层样品,与单光束Ptychographichographic测量值相比,层到层的分离范围从1400 µm降至100 µm,分辨率没有损害。最后,FZP的聚焦作用与策划
美国和欧盟公共 SSA 服务的技术比较 Mariel Borowitz 美国国家海洋与大气管理局 (NOAA) Cristina Pérez Hernández 西班牙空间局 (AEE) Matt Hejduk 航空航天公司 Aurélie Gillet 欧盟空间监视与跟踪伙伴关系 (EU SST) Monique Moury 法国国家空间研究中心 (CNES) Pascal Faucher 法国国家空间研究中心 (CNES) 执行摘要 轨道上的航天器数量正在迅速增加,为地球上的人类提供关键的通信、地球观测、全球导航和其他服务。与此同时,航天领域正在看到新进入者和新技术的开发。这种活动的增加有利于全球经济和国家安全,但也导致轨道拥堵加剧和意外碰撞的可能性增加。此类碰撞将终止相关任务并产生可能对其他航天器构成威胁的碎片。为了确保这一环境的安全性和可持续性,全球航天器运营商必须能够可靠地获得航天安全服务。欧盟空间监视和跟踪 (EU SST) 和美国空间交通协调系统 (TraCSS) 计划就是为满足这一需求而创建的。这两个系统都免费为世界各地的航天器所有者/运营商提供空间态势感知 (SSA) 服务。这两个组织的目标是支持航天安全和可持续性。这两个组织还与商业 SSA 行业密切合作,利用其政府系统中的商业数据和/或功能,并鼓励商业 SSA 部门提供服务以增强政府提供的 SSA 安全服务。欧盟 SST 和 TraCSS 认识到,为了使航天器运营商有效地使用政府服务,以及为了使商业 SSA 提供商制定市场战略,他们需要清楚地了解政府将免费提供的服务。这项由欧盟 SST 和 TraCSS 官员进行的研究旨在提供这种清晰度。它描述了每个项目提供的服务,并分析了它们之间的相似点和不同点。总体而言,研究发现,欧盟 SST 和 TraCSS 提供的服务大体一致,特别是在轨道防撞服务方面。但也存在一些差异,例如美国对与常规机动相关的候选机动的筛选以及异常报告。在目前存在差异的一些领域,未来这两个系统可能会更加一致;欧盟目前提供再入服务,而美国计划在项目的未来阶段提供此类服务。同样,美国将提供 SSA 数据和信息作为服务,欧盟正在考虑在未来增加这一功能。这两个系统都预计政府服务提供将随着航天工业不断变化的需求而不断发展。因此,本文重点介绍了目前正在考虑或开发的潜在服务,例如发射防撞和改进的所有者-运营商星历表。欧盟 SST 和 TraCSS 致力于与世界各地的航天参与者密切合作,以支持航天部门的持续安全和可持续发展。这项研究旨在朝着持续的透明度和参与迈出一步,其目的是继续作为一个全球社区共同努力实现这些目标。
不受控制的火箭再入造成的不必要风险 Michael Byers 加拿大不列颠哥伦比亚大学政治学系,温哥华,不列颠哥伦比亚省 Ewan Wright 1 加拿大不列颠哥伦比亚大学跨学科研究研究生课程,温哥华,不列颠哥伦比亚省 Aaron Boley 加拿大不列颠哥伦比亚大学物理与天文学系,温哥华,不列颠哥伦比亚省 Cameron Byers 加拿大维多利亚大学工程学士课程 1. 摘要 2020 年,超过 60% 的低地球轨道发射导致一个或多个火箭体被遗弃在轨道上,并最终以不受控制的方式返回地球。在这种情况下,它们 20% 到 40% 的质量会在重返大气层的热量中幸存下来。许多幸存的碎片非常重,足以对陆地、海上和飞机上的人们构成严重风险。对于重返太空物体的可接受风险水平,国际上尚无共识。这有时是一个争论点,例如 2021 年 5 月,重达 20 吨的长征 5B 火箭核心级失控再入。包括美国、法国和欧空局在内的一些监管机构已经对重返大气层的太空物体设定了 1/10,000 的可接受伤亡风险(即对人类生命的统计威胁)阈值。我们认为,这一阈值忽略了火箭发射次数迅速增加的累积效应。它也无法解决低风险、高后果的结果,例如火箭级撞上人口稠密的城市或大型客机。在后一种情况下,即使是一小块碎片也可能造成数百人伤亡。除此之外,当遵守成本被认为过高时,这一门槛经常被忽视或放弃。我们分析了 1992 年至 2021 年重返大气层的火箭体,并模拟了相关的累积伤亡预期。然后,我们将这一趋势推断到不久的将来(2022 - 2032 年),模拟不受控制的火箭体再入对全球人口的潜在风险。我们还分析了目前在轨并预计很快将脱离轨道的火箭体数量,发现风险分布明显偏向赤道附近的纬度。这意味着主要航天国家给全球南方国家带来了不成比例的伤亡风险负担。现代火箭拥有可重新点燃的发动机,允许受控再入偏远的海洋区域。这与更新的任务设计相结合,将消除大多数不受控制的再入的需要。一些额外的成本将落在发射提供商身上,包括再入机动的额外燃料。政府任务应该能够吸收这些额外成本,但它们可能会影响商业发射提供商的竞争力。全球南方国家,不受控制的火箭弹体给这些国家的人民带来了不成比例的风险,因此,应该要求主要航天国家通过强制控制火箭再入来创造公平的竞争环境。这一解决方案必须由多边协调,必须对不遵守规定的行为产生有意义的后果,同时为那些无法立即参与或负担得起控制再入的人留有余地。1 通讯作者:etwright@student.ubc.ca