本文分析了两次世界大战之间第一个十年期间,航空母舰在美国海军太平洋战争规划中的发展和定位。本文以卡伦·卡普兰 (Caren Kaplan) 对军事机动能力的框架为基础,认为随着航母技术在 20 世纪 20 年代的进步,人们认识到航母不仅仅是负责支援舰队大炮的机动岛屿。本文借鉴了一系列主要资料,特别是有关橙色战争计划(美国对日作战计划,主要在 20 世纪 20 年代和 30 年代制定)的资料,并分析了美国海军战争学院的文件,这些文件将航母定位为美国太平洋力量投射的关键工具,通常是抱有远见卓识。通过讨论 1924 年和 1929 年举行的两次美国舰队问题海军演习,本文认为,人们认识到需要同时考虑舰船和飞机的能力,这为两次世界大战期间的美国战争规划者提供了新的、重要的战略机遇。© 2017 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
LM LINUSS 系统是一对 LM 50™ 12U 立方体卫星,每个卫星大小与四片烤面包机相当,旨在展示小型卫星如何在任何轨道上发挥关键太空架构维持的重要作用。LM LINUSS 系统采用内部资金开发,在地球同步轨道 (GEO) 进行了多次演示。LM LINUSS 任务是验证洛克希德马丁公司 (LM) 未来太空升级和服务任务的基本机动能力,以及展示微型空间领域感知能力。LM LINUSS 任务还展示了 Innoflight 成熟的新型机载高性能处理技术、VACCO 的低毒推进技术、惯性测量单元、机器视觉、3D 打印组件和 LM 的 SmartSat™(变革性在轨软件升级架构)技术。作为洛克希德马丁公司 LM50 系列小型卫星的一部分,两颗 LM LINUSS 航天器(尺寸约为 8x8x12 英寸)是该公司任务电光有效载荷甲板与 Tyvak Nano-Satellite Systems(Terran Orbital 公司旗下一家公司)的下一代 12U 总线的协作集成。本文提供了 2023 年第一季度的在轨性能数据。
简介:未来的火星任务,无论是机器人任务还是载人任务,都将依靠具有增强自主性的探测车来应对火星探索日益复杂的问题。尽管取得了进展,但火星探测车任务的运营管理在很大程度上依赖于持续的人为干预。因此,集成自主机动能力对于减轻地面控制中心的运营负担至关重要。随着探测车能力的进步,包括增强的传感和处理能力,机载实时网络变得至关重要。事实上,探索火星提出了一项复杂的技术挑战,需要管理太空探测车内的众多系统和子系统;这些组件之间的通信对于确保任务成功至关重要。在这种情况下,采用实时网络变得至关重要,以确保关键数据的传输和接收没有延迟或中断。特别是,当前的机载网络技术将无法满足这种日益增长的需求。集成时间敏感网络 (TSN) 架构对于支持自主性和确保可靠的实时数据传输至关重要。这种必要性促使航天器行业考虑使用 TSN 解决方案升级运载火箭和卫星上的机载网络 [1]- [4]。火星探测器的网络也必须遵循同样的趋势,因为 TSN 技术为解决这些任务中与通信相关的挑战提供了强大的解决方案。
一般认为,尤利西斯·S·格兰特从荒野到彼得斯堡的战役之后弗吉尼亚的军事事件的焦点是蹲在坚固堑壕后面的军队。即使是普通的内战学者也知道罗伯特·E·李经常表达的担心,担心被困在里士满和彼得斯堡的工事中。李将军曾被剥夺了在 1862 年和 1863 年挫败一系列联邦指挥官的机动能力,他认为围城必然会导致北方的胜利。尽管持这种悲观态度,但他还是在 9 个多月的艰苦时间内对南方首都进行了有效的保卫,在 1864 年 7 月下旬的火山口战役中侥幸逃脱,并发动了几次有限的攻势,试图打破格兰特的顽强控制。李在这场旷日持久的围攻中最后一次激进的进攻发生在 1865 年 3 月下旬的斯特德曼堡,那里数千名南方邦联军伤亡,毫无优势。一周之内,五岔河之战和格兰特在彼得斯堡的最后进攻解决了这个问题。在弗吉尼亚战争结束之前,只剩下向阿波马托克斯的漫长撤退。
OPNAVINST 1534.1F N095 2024 年 8 月 1 日 OPNAV 指令 1534.1F 来自:海军作战部长 主题:战略海运军官部队 参考: (a) 1989 年 10 月 5 日第 28 号国家安全指令 (b) 美国法典第 46 部分 B – 商船服务 (c) RESPERSMAN M-1001.5 (d) BUPERSINST 1001.39F (e) MILPERSMAN 1611-010 附件: (1) 战略海运军官部队定义 (2) 战略海运军官部队能力 (3) 海上服务和引航服务退休积分 1.目的。为战略海运军官部队 (SSOF) 的组织、管理、培训和动员制定政策并分配职责。本指令纳入单独政策中定义的组织的职责和权限。这是一次完整的修订,应完整审查。2. 取消。OPNAVINST 1534.1E。3. 范围和适用性。本指令适用于 SSOF 内部、支持和受其支持的办公室、利益相关者和人员。4. 背景。战略海运是国防战略的重要组成部分,提供海上机动能力,以在全球范围内投射和维持战斗力。根据参考 (a),美国的国家海运目标是确保有足够的军事和民用海事资源来满足国防部署和支持国家安全战略的基本经济要求。为了满足这一指令,国防部 (DoD) 依靠政府和商业拥有的船只的组合,所有这些船只都依靠有限的民用商船船员来启动、操作和维持。为了保持海运能力以满足国家安全目标,并减轻民用船员短缺的风险,海军根据参考 (b) 维持 SSOF(以前称为商船预备队)。5. SSOF 定义。参见附件(1)。
非线性动态逆是针对大迎角机动问题研究最多的非线性控制技术。非线性动态逆是一种基于系统动力学逆的反馈线性化方法 [1]。通常,飞机动力学可分为两类:慢速动力学和快速动力学,F-16 也不例外。慢速动力学对于固定翼飞机是相同的,可以使用风轴微分方程推导。另一方面,快速动力学对于每架飞机都是独一无二的,在推导飞机的快速动力学时必须包括空气动力学数据库。本文使用了基于 NASA 兰利和艾姆斯研究中心的 F-16 风洞试验结果的亚音速气动数据库 [1]。该数据库适用于 和每种飞行条件。因此,它是在大攻角区域测试新开发的控制律的合适平台。在 Simulink 环境中开发了 F-16 的 6 自由度数学模型。数学模型包括气动数据库、发动机模型、大气方程和运动方程 [3]、[4]。开发了平飞、爬升、下降和稳定平转飞行条件下的配平算法 [5]。此外,还基于小扰动理论推导出了线性化算法 [6]。为了比较非线性动态逆控制律和线性控制律的性能,设计了横向和纵向运动的线性控制增强系统。采用特征结构分配技术综合了线性控制律。纵向控制器是一种简单的迎角控制指令系统,使用 F-16 飞机的短周期动力学设计而成。横向控制器是一种侧滑和稳定轴滚转速率指令系统,使用 F-16 飞机的线性化横向稳定轴方程设计而成。线性控制器的设计过程最终根据高度和速度安排增益矩阵,以实现全包络有效飞行控制律。使用预定义的大迎角机动对线性和非线性飞行控制律进行了比较。这种机动被定义为快速且同时的俯仰和滚转运动。虽然拉起运动在迎角和之间变化,但滚转运动在倾斜角保持恒定。随着攻角的增大,纵向和侧向动力学无法分离,因此增益调度线性控制器和非线性动态逆控制器的机动能力变得重要。
本文介绍了创新型遥控 ETF 飞艇 1 的技术演示器的地面测试。测试活动旨在验证 ETF 的飞行控制系统,该系统基于推力矢量技术,与飞艇结构一起代表了 ETF 设计的一项重大创新。都灵理工学院航空航天系的一个研究小组与意大利一家小型私营公司 Nautilus 合作,几年来一直致力于 ETF (Elettra Twin Flyers) 的研究。这艘飞艇是遥控飞艇,具有高机动能力和良好的操作特性,即使在恶劣的大气条件下 2 。Nautilus 新概念飞艇具有结构和适当的指挥系统,使飞行器能够在正常和强风条件下进行向前、向后和侧向飞行以及以任何航向悬停。为了实现这些功能,ETF 演示器 3 采用了非常规的架构,该架构基于双船体,带有中央平面外壳结构、螺旋桨、机载电气系统和有效载荷(图 1)。作为主要指挥系统,气动控制面被六个螺旋桨取代,这些螺旋桨由电动机驱动,可在整个飞行范围内控制和操纵飞艇。本文分析了初步测试运行的结果,并将功率需求与专为 ETF 演示器 4 开发的燃料电池系统的性能进行了比较。I 简介 低成本多用途多任务平台 Elettra-Twin-Flyers (ETF) 正在由 Nautilus S.p.A 和都灵理工大学 [1] 合作开发。这是一种非常创新的遥控飞艇,配备了高精度传感器和电信设备。由于其独特的特点,它特别适合内陆、边境和海上监视任务以及电信覆盖范围扩展,特别是在那些无法进入或没有传统机场设施且环境影响是主要关注点的地区。ETF 的特点是机动性强,风敏感度低 [2]。飞行条件包括前向、后向、侧向飞行和悬停,无论是在正常风况下还是在强风条件下。为了实现这些能力,ETF 采用了高度非传统的架构。设计的关键点是创新的指挥系统,它完全基于由电动机驱动的推力矢量螺旋桨,由氢燃料电池供电。ETF 概念来自监视和监控目的。该飞艇设计具有很强的机动性,可以满足高水平的任务要求,可以操作高度专业化的仪器,例如轻型合成孔径雷达 (SAR) 系统或电光 (EO) 红外摄像机或高光谱传感器。为了满足平均监视要求,该系统的最低续航时间为 48 小时,可延长至 72 小时,高度操作范围为 500 至 1500 米。