的信息,例如人们经常坐在椅子上,马可以戴马鞍,毕加索有时会从多个角度展示场景。事实证明,这些事实对于解释这幅特定的图像都无关紧要,但计算机没有先验方法来拒绝它们的相关性而不考虑它们。一旦识别出图片中的物体,计算机就必须制定一个提供简洁描述的句子,这涉及了解哪些细节有趣且相关,并选择相关的观点。例如,将图片描述为“两座山,部分被生命体遮挡”可能并不令人满意,即使这可能是准确的。我们对每一项任务的了解足以让我们合理地对计算机进行编程,使其生成简单图片的一句话描述,但这个过程会很繁琐,并且生成的程序会非常慢。人类大脑几乎毫不费力就能完成的事情,即使是现存最快的计算机也需要很多天的时间。这些电子巨人在数字加法方面远远胜过我们,在符号思维过程中,我们同样也比不上它们。
关于FDP:有关人工智能(AI)的教师开发计划(FDP),用于计算机视觉,医学成像和物联网应用程序将帮助教育者和研究人员了解AI基础知识以及它如何适用于具有多个安全应用的医学成像和物联网技术。参与者将探索机器学习和深度学习概念,专注于使用AI和IoT进行医学成像,这有助于诊断,医疗保健,农业,零售和监视系统。AI通过基于面部识别,虹膜识别,指纹分析和语音识别的准确有效的身份验证方法,在计算机视觉中起关键作用。通过动手活动和现实世界的例子,与会者将获得实用技能,以有效地使用AI在教学和研究中使用不同的算法。在计划结束时,参与者将准备将AI工具整合到他们的工作中,提高他们通过现代技术来教授和解决安全挑战的能力。这将通过增强他们在这些关键领域的专业知识和教学能力来使参与者受益。主要课程内容:•物联网体系结构,通信协议,计算机视觉简介,大数据分析,IIT,生物医学和医学图像分析应用程序。•机器学习基础知识,使用数据预处理和数据可视化。监督和无监督的学习方法,神经网络和应用。•深度学习方法的简介和基于DL的其他架构及其应用。•张量流/keras/pytorch/jupyter和colab的基础知识。•CNN架构用于计算机视觉,生物特征和医学成像实现。•IOMT,AI/IOT用于医疗保健监测,精密农业,医疗诊断,工业应用。•用于生物医学成像,CT扫描/MRI/X射线图像分析,眼底和医学图像分类的AI/ML。•活动识别,对象检测/跟踪算法(例如Yolo等),诸如UNET等分段算法等。•使用Python/Matlab使用数据预处理和数据可视化。•使用Python/Matlab的动手会话。主持此计划的教师:该计划将由NIT Warangal的教职员工进行;邀请来自IIT/NIT/IIIT的有关领域的院士在该计划中发表讲座。也有望作为课程的一部分提供行业的演讲者。注册费细节:教师和研究学者Rs.750/ - 行业参与者Rs.2250/ -
_____________________________________________________________________________________ SCOTOPIA-- A Multidisciplinary Bi-annual Journal Volume 1 Issue 1 (January-June) 2016
这本书是对机器视觉的易于访问且全面的介绍。它提供了所有必要的理论工具,并显示了它们如何在实际图像处理和机器视觉系统中应用。关键特征是包括许多编程练习,这些练习可以洞悉实用图像处理算法的开发。作者从对数学原理的评论开始,然后继续讨论图像处理中的关键问题,例如图像的描述和表征,边缘检测,特征提取,分割,纹理和形状。他们还讨论了图像匹配,统计模式识别,句法模式识别,聚类,扩散,自适应轮廓,参数变换和一致的标签。描述了重要的应用程序,包括自动目标识别。本书中的两个复发主题是一致性(用于解决机器视觉问题的主要哲学结构)和优化(用于实现这些方法的数学工具)。本书中使用的软件和数据可以在www.cambridge.org/9780521830461上找到。这本书针对电气工程,计算机科学和数学的研究生。这对从业者也将是有用的参考。
