摘要 - 植物材料对行星科学,建筑和制造业中许多机器人任务的关键兴趣。但是,颗粒材料的动力学很复杂,并且通常在计算上非常昂贵。我们提出了一组方法和一个用于快速模拟图形处理单元(GPU)的颗粒材料的系统,并表明该模拟足够快,可以通过增强学习算法进行基础培训,目前需要许多动力学样本才能实现可接受的性能。我们的方法模型使用隐式时间播放方法进行多体刚性接触的颗粒材料动力学,以及算法技术,用于在粒子对和任意形成的刚体之间和任意形状的刚体之间的有效并行碰撞检测,以及用于最小化Warp Divergence的编程技术,以最大程度地构建单层构造(构建多项)。我们在针对机器人任务的几个环境上展示了我们的仿真系统,并将模拟器作为开源工具发布。
本本学论文研究了使Ari人形机器人能够使用机器学习和计算机视觉中的基本概念来学习和识别新对象的任务。该研究围绕着开发和实施直接向前的3D对象检测和分类管道,目的是使机器人能够识别以前尚未遇到的对象。该方法整合了开放式识别和增量学习的基本方面,重点是使用ARI机器人在实用环境中应用这些技术。通过一系列元素实验评估了实施系统的有效性,重点关注其检测和分类新的观察的能力。这些初始测试提供了有关系统在受控环境中的基本功能及其潜在效用的见解。本文在介绍性层面上有助于掌握机器人技术,并在实用机器人背景下对机器学习和计算机视觉的使用进行了初步探索。它为在机器人对象识别领域的未来研究奠定了基础。
1月25日 - 气候变化的介绍和背景。关于能源效率和回归技术的讲座。分配的论文1。2月1日 - 讨论论文1。关于极端天气/灾难响应和计算机视觉/卷积神经网络的讲座。分配的论文2。分配了HW 1。2月8日 - 讨论论文2。关于全球气候变化和遥感/分割的讲座。分配的论文3。2月15日 - 讨论论文3。关于气候科学模型和无监督和生成模型的讲座。分配的论文4。HW 1应得。分配了HW 2。2月22日 - 讨论论文4。关于食品/农业和时间序列模型的讲座。分配的论文5。2月29日 - 讨论论文5。关于沟通/心理学和自然语言处理的讲座。分配的论文6。HW 2应得。分配了HW 3。3月7日 - 讨论论文6。职业日,项目信息和考试准备。3月14日 - 考试I.关于气候融资和推荐系统和遗传算法的讲座。分配的论文7。HW 3应得(星期五午夜)。分配了项目HW。春假3月28日 - 讨论论文7。关于运输和增强学习的讲座。分配的论文8。4月4日 - 讨论论文8。关于电网/可再生能源和图形神经网络的讲座。
计算机科学与工程人工智能(AI):负责的AI,AI安全性,优化算法;机器学习和深度学习:生物医学信号,农业领域,网络层/传输层中的异常检测,优化算法,位置预测;计算机视觉和图像处理:农业和医疗领域,语音,图像,信号;自然语言处理,LLM;数据分析,视频分析,大数据分析,社交网络分析;理论计算机科学;算法和图理论,可解释的AI(XAI)-Healthcare;分布式计算;边缘计算;云计算;计算范式的能源效率;新兴数据库;生物信息学和计算生物学;数据隐私和安全性,网络安全性,信息安全性,网络安全性中的ML,云数据安全性,量子计算和安全性,分布式计算安全性,硬件安全性,用于网络安全系统和内存的ML;软定义网络 - 安全性;区块链技术;数字取证和犯罪调查;密码学,量子密码学,应用加密,量子加密后,多方计算,差异隐私;智能运输和互联车辆,用于野生动植物和自然保护的数字技术;物联网;通信和信号处理;系统工程的优化;遥感应用;资源管理和日程安排,以进行未来的计算连续体; IRS辅助通信和空间调制中的检测和估计问题,增强物理层
On-On-On-On-Orbit服务(OO)包括一系列服务类型,以增加卫星的寿命及其性能,并确保它不会助长太空碎片的日益增长的问题。鉴于“巨型构成”的兴起,避免卫星被遗弃的人尤其重要。 在1970年代的第一个案件中,使用从地面或宇航员控制的机器人和机器人(例如在维修和升级到哈勃太空望远镜(HST)和国际空间站(ISS))中,使用了从地面或宇航员控制的机器人多次实现了OOS。 这使各种太空机构和其他组织可以为多种OOS任务类型的成熟流程和工具。鉴于“巨型构成”的兴起,避免卫星被遗弃的人尤其重要。在1970年代的第一个案件中,使用从地面或宇航员控制的机器人和机器人(例如在维修和升级到哈勃太空望远镜(HST)和国际空间站(ISS))中,使用了从地面或宇航员控制的机器人多次实现了OOS。这使各种太空机构和其他组织可以为多种OOS任务类型的成熟流程和工具。
本课程为机器人探索以及AI驱动的映射和采样技术提供了全面的介绍,该技术量身定制,用于太空探索和地球观察。学生将在计算机视觉,同时本地化和映射(SLAM),多机器人协调以及使用高级AI工具在极端环境中运营等关键领域获得专业知识。课程强调现实世界的实施,将讲座与动手项目结合使用移动性自主系统,包括自主地面,空中和水生机器人作为数字双胞胎可用的以及在梦境实验室中的物理。该课程最终达到了一个基于小组的最终项目,学生在该项目中设计并展示了端到端的机器人系统,用于未来的空间探索,行星科学和地球观察。
Applications : SOLIDWORKS, Simulink, LabVIEW, Microsoft Office, Creo, NX, ANSYS, Confluence, Unity Programming : Python, C++, MatLab, HTML, Java, ROS, Machine Learning, Image Processing, Embedded Firmware Manufacturing : Sheet Metal Design, CNC, Composite Materials, DFM, Soldering, PCB Design, Rapid Prototyping Professional Experience Planet Labs -系统工程实习生 - 2023年6月 - 2023年6月,加利福尼亚州旧金山•在我们的下一代航天器上开发了任务重要资格测试的测试程序。•模拟了航天器原型的一天中的一天,涵盖了所有子系统以进行需求验证。基本机器人技术 - 机械工程师 - 加利福尼亚州帕萨迪纳,2020年1月 - 2022年8月•使用神经网络推理加速器开发了下一代感知硬件。•开发了用于基于Docker的容器的机器人操作系统的外围驱动程序。•集成的神经网络将优化的边缘计算机纳入生产硬件解决方案。•向消费者,工业和食品安全的制造环境部署和集成的自定义检查硬件。Morse Corp-工程合作社 - 马萨诸塞州剑桥市2019年1月 - 2019年8月•为无人机设计的结构组件及其在Solidworks中的飞行测试设备。•开发了固件,以控制飞行测试设备上释放机制的精确时机。•使硬件测试方法更可靠,并且与自动测试和冗余安全系统一致。•与系统工程团队合作就与美国陆军的主要开发合同提案。努力机器人 - 系统工程合作社 - 马萨诸塞州切尔姆斯福德,2018年1月 - 2018年6月•对机器人性能进行了移动性,耐力,通信和附属互操作性的验证。•设计了一种定制测试工具,以使用基于Python的软件来测量和记录机器人地面速度。HASBRO Inc.-工程合作社,Integrated Play -Pawtucket,RI,2017年1月至2017年6月•使用高级技术,诸如语音交互之类的高级技术,为动画,连接的玩具设计了新的游戏体验。•使用Unity和Google Cardboard Android应用程序原型的新型游戏VR互动概念。•使用加工和3D打印零件创建了用于未来动画玩具的机制模拟。工程活动结构和复合材料实验室 - 研究生研究员2023-2024•研究物理知情的神经网络,用于建模飞行中机翼的空气动力学和结构响应。•开发和训练神经网络,使用Pytorch和Nvidia模量框架预测复杂的3D流。Avatar Xprize Arm Capstone Project 2019秋季•在由5名学生组成的团队中,设计和原型拟建了拟人化机器人手臂和触觉外骨骼控制器。•开发了一个带有精确扭矩控制的准直接驱动应用程序的紧凑型无刷发动机驱动程序。•编写了电动机控制器固件,包括面向现场的控制,RS485上的串行通信以及实施
Visvesvaraya技术大学(VTU),以Bharat Ratna Dr。 M. Visvesvaraya爵士根据卡纳塔克邦政府1994年的VTU法案,于1998年4月1日成立。这所大学是为了促进技术教育,研究,创新和外展计划的计划和可持续发展。大学对整个卡纳塔克邦有管辖权。t的总部位于贝拉加维,为了平稳的行政活动,在班加罗尔(Muddenahalli),Mysuru,Kalaburagi和Belagavi建立了四个地区办事处。大学主校园位于贝拉加维,被恰当地称为“ Jnana Sangama”,“知识的融合”。“ jnana sangama”校园分布在116英亩的宁静氛围上,具有现代的建筑优雅和美丽。