摘要是由于最近对教育机器人技术的兴趣爆炸(ER)的爆炸,本文试图通过提出新的思考和探索相关概念的新方法来探讨这一领域。本文的贡献是四倍。首先,未来的读者可以将本文用作探索教育机器人技术的预期学习成果的参考点。从详尽的潜在学习收益列表中,我们提出了一组六个学习成果,可以为机器人活动设计的可行模型提供一个起点。第二,本文的目的是作为最近的ER平台的调查。在越来越多的可用机器人平台的驱动下,我们收集了最新的ER套件。我们还提出了一种对平台进行分类的新方法,该平台没有制造商的模糊年龄范围。所提出的类别(包括无代码,基本代码和高级代码)源自学生需要有效地使用它们的先验知识和编程技能。第三,随着ER竞赛的数量和比赛与ER平台的增加同时增加,该论文介绍并分析了最受欢迎的机器人事件。机器人竞赛鼓励参与者在促进特定学习成果的同时发展和展示自己的技能。本文旨在提供这些结构的概述并讨论其效率。最后,本文探讨了提出的ER竞争的教育方面及其与六个拟议的学习成果的相关性。这提出了一个主要特征组成竞争并实现其教学目标的问题。本文是第一项研究,将潜在的学习收益与我们的竞争与我们的最佳知识相关联。
摘要:基于机器学习的糖尿病预测模型已在医疗保健中引起了人们的重大关注,作为糖尿病早期检测和管理的潜在工具。但是,这些模型的成功实施在很大程度上取决于医疗保健专业人员的参与。本摘要探讨了医疗保健专业人员在实施基于机器学习的糖尿病预测模型中的作用。医疗保健专业人员通过与数据科学家和机器学习专家合作,在这些模型的开发和实施中起着至关重要的作用。他们的临床专业知识和领域知识有助于确定相关的数据源和模型开发变量。他们还确保数据质量和完整性,在整个过程中解决道德方面的考虑。在实施阶段,医疗保健专业人员负责数据收集和预处理,包括从电子健康记录和可穿戴设备中收集患者数据。他们在清洁和组织模型输入数据时确保数据隐私和安全性。医疗保健专业人员评估和验证模型的性能和准确性,评估局限性和潜在偏见。集成到临床工作流程中是医疗保健专业人员的另一个关键责任。他们与IT部门合作,无缝整合
多发性硬化症(MS)是中枢神经系统(CNS)的一种慢性炎症性疾病,被认为是遗传学与生活方式和环境因素的相互作用引起的复杂疾病。这项研究旨在确定通过使用机器学习模型有助于MS发展的遗传和环境风险因素之间的相互作用。这包括用于MS预测和随机森林,Rosetta和Logistic回归模型的逻辑回归模型,用于查找SNP与风险因素之间的相互作用。研究人群由1118个个体,5,615个,有MS和5,566个健康对照组成,并提供有关环境和生活方式暴露的遗传信息和问卷数据。遗传信息包括基因型数据,而问卷数据包括性别,20岁时BMI,吸烟习惯,暴露于阳光,单核细胞增多症状态和年龄。这项研究确定了可能与MS发展有关的潜在基因环境相互作用。这些相互作用的含义将需要在未来的研究中得到进一步验证。使用基于网络的方法确定了MS疾病模块,可用于进一步分析以鉴定涉及MS的中心基因。这项研究的结果可能会更好地了解疾病发育和发病机理,并有助于采取个性化干预措施,以最大程度地减少疾病发展的风险。
我还感谢达卡Diit讲师Mizanur Rahman为我们提供了成功完成该项目的设施。我还对达卡(Dhaka)的DIIT讲师,讲师为我们提供了成功完成该项目的设施。我也表示感谢Mushfiqur Rahman,Dhaka Diit讲师,为我们提供了成功完成该项目的设施。
机器化和人工智能(AI)已成为现代媒体生态系统的组成部分。本文旨在描述这些技术的当前状态及其在更新和现代化新闻业中的作用。它介绍了有关机器人技术和AI对新闻实践的影响的信息,确定了AI对新闻业未来的潜在后果,并讨论了这些技术的日益影响。尽管兴趣越来越高,但AI对新闻业和我们的信息环境的影响仍然很少。也没有充分关注新闻业对科技公司对AI的影响。本文考虑了新闻机构中AI的结构含义,研究了AI在社论,商业和技术领域中的使用。得出的结论是,AI技术将增强而不是取代记者的工作,而人工智能不会对专业新闻业构成威胁。
材料研究学会研究生金奖,材料研究学会,2017 年秋季年会美国国家科学基金会 Vizzies 科学可视化奖,Octobot 摄影作品大众选择奖,2017 美国国家科学基金会研究生研究奖学金,2012-2015 乔治 H. 米切尔学术卓越奖,德克萨斯大学奥斯汀分校,2012 德克萨斯大学奥斯汀分校学院理事会月度本科生研究员,2012 德克萨斯大学奥斯汀分校本科生研究奖学金,2011 初级研究员,德克萨斯大学奥斯汀分校初级研究员荣誉计划,2009-2012 大学学者,德克萨斯大学奥斯汀分校考克雷尔工程学院,2009 和 2010德克萨斯大学奥斯汀分校,2007 年至 2012 年十个学期中的九个学期
4 md.devendran@gmail.com摘要:慢性肾脏病(CKD)是一个重大的全球健康问题,通常导致肾脏衰竭,需要昂贵的医疗治疗,例如透析或移植。早期检测CKD对于及时干预和改善患者预后至关重要。 该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。 通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。 本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。 使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。 这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。 该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。早期检测CKD对于及时干预和改善患者预后至关重要。该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。
摘要 - 我提出了一种新颖的增强学习方法,用于在模拟环境中训练四足机器人。在动态环境中控制四足机器人的想法非常具有挑战性,我的方法提出了最佳的政策和培训方案,资源有限,并且表现出色。该报告使用RaisimgyMtorch开源库和专有软件Raisim进行模拟Anymal机器人。我的方法以训练时的机器人步行方案的评估为中心,以制定马尔可夫决策过程。使用在Actor-Critic模式下使用的近端策略优化算法来解决结果的MDP,并使用一台台式机收集了数千个状态转换。这项工作还提出了一个控制器方案,该计划在模拟环境中显示了数千个时间步骤。这项工作还为早期研究人员提供了他们喜欢的算法和配置的基础。