Visvesvaraya技术大学(VTU),以Bharat Ratna Dr。 M. Visvesvaraya爵士根据卡纳塔克邦政府1994年的VTU法案,于1998年4月1日成立。这所大学是为了促进技术教育,研究,创新和外展计划的计划和可持续发展。大学对整个卡纳塔克邦有管辖权。t的总部位于贝拉加维,为了平稳的行政活动,在班加罗尔(Muddenahalli),Mysuru,Kalaburagi和Belagavi建立了四个地区办事处。大学主校园位于贝拉加维,被恰当地称为“ Jnana Sangama”,“知识的融合”。“ jnana sangama”校园分布在116英亩的宁静氛围上,具有现代的建筑优雅和美丽。
摘要:由于食物的复杂状态和多样化的物理特性,有效地挖出食品对当前机器人系统构成了重大挑战。为了应对这一挑战,我们相信将食品编码为有意义的有效食品的重要性。然而,食品的独特特性,包括可变形,脆弱性,流动性或粒度,对现有表示构成了重大挑战。在本文中,我们以隐式方式提出了积极感知来学习有意义的食物代表的潜力。为此,我们提出了Scone,这是一个食品搜索机器人学习框架,利用从积极的掌握中获得的表示形式来促进食品可铲政策学习。Scone包括两个Crucial编码组件:交互式编码器和状态检索模式。通过编码过程,Scone能够捕获食品的特性和重要的状态特征。在我们的现实世界中的实验中,Scone在三种不同的难度水平上使用6种以前看不见的食品时,成功率具有71%的成功率,超过了最先进的方法。这种增强的性能强调了Scone的稳定性,因为所有食品始终达到超过50%的任务成功率。此外,Scone可容纳各种初始状态的令人印象深刻的能力使其能够精确评估食物的当前状况,从而导致了令人信服的成功率。有关更多信息,请访问我们的网站。
本本学论文研究了使Ari人形机器人能够使用机器学习和计算机视觉中的基本概念来学习和识别新对象的任务。该研究围绕着开发和实施直接向前的3D对象检测和分类管道,目的是使机器人能够识别以前尚未遇到的对象。该方法整合了开放式识别和增量学习的基本方面,重点是使用ARI机器人在实用环境中应用这些技术。通过一系列元素实验评估了实施系统的有效性,重点关注其检测和分类新的观察的能力。这些初始测试提供了有关系统在受控环境中的基本功能及其潜在效用的见解。本文在介绍性层面上有助于掌握机器人技术,并在实用机器人背景下对机器学习和计算机视觉的使用进行了初步探索。它为在机器人对象识别领域的未来研究奠定了基础。
交互式模仿学习(IIL)是模仿学习(IL)的一个分支,在机器人执行过程中,间歇性地提供了人类反馈,从而可以在线改善机器人的行为。近年来,IIL越来越开始开拓自己的空间,作为解决复杂机器人任务的有前途的数据驱动替代方案。IIL的优势是双重的,1)它是有效的,因为人类的反馈将机器人直接引导到了改善行为(与增强学习(RL)相反(RL),必须通过试用和错误发现行为(必须通过试用和错误发现),而2),并且2)是强大的,因为它是强大的,因为分配者和教师的分配量直接在教师身上是匹配的,并且在教师中匹配的范围是在范围内逐渐匹配的,并且在教师中匹配的范围是在范围内的指导,而逐渐匹配的是,教师的自我反射是及格的, o line Ile IL方法,例如行为克隆)。尽管有机会,但文献中的术语,结构和适用性尚不清楚,也尚未确定,从而减慢了其发展,因此,研究了创新的表述和发现。在本文中,我们试图通过对统一和结构的领域进行调查来促进新从业人员的IIL研究和较低的入境障碍。此外,我们旨在提高人们对其潜力,已完成的工作以及仍在开放的研究问题的认识。
视觉语言模型(VLM)最近被利用以生成机器人动作,形成视觉语言动作(VLA)模型。然而,直接适应验证的VLM来进行机器人控制仍然具有挑战性,尤其是当受到有限数量的机器人示范限制时。在这项工作中,我们介绍了llara:l arge l arguage and robotics a ssistant,该框架将机器人动作策略作为视觉文本对话制定,并通过视觉视觉视觉中的视觉音调调谐到计算机视觉中的成功激励到有效的VLA中,从而有效地将VLM转移到强大的VLA中。首先,我们提出了一条自动化管道,以生成来自外部行为克隆数据集的机器人的对话风格的指令调整数据,将机器人动作与图像像素辅助材料对齐。此外,我们通过定义六个辅助任务以自我监督的方式增强了此数据集,而无需任何其他操作注释。我们表明,使用有限数量的此类数据集进行的VLM FINETUNENET可以为机器人控制产生有意义的行动决策。通过跨模拟和现实世界的实验,我们证明了Llara在保留大语言模型的概括能力的同时,实现了状态的性能。代码,数据集和预处理的模型可在https://github.com/lostxine/llara上找到。
AE/BMED/ME/ECE/CS 4699机器人或自主系统(3小时)的本科研究可用于满足4个核心要求之一。这项研究必须与机器人学院成员一起完成,并需要一份最终报告,该报告强调其与各自的核心的联系:自治,控制,机械和感知。
Lucidsim一次提供了所有三种解决方案。首先,我通过围绕Mujoco物理引擎构建并使用对象掩码和深度从模拟器构成和调节生成的图像来使数据实现和多样化。这确保了与场景几何形状的视觉一致性。为了减轻由于这种调节而导致的样本多样性的丧失,我通过从Chatgpt采购结构化图像提示来注入变化。第二,我通过一种新技术(DIM)提高了渲染速度,该技术通过机器人的摄像头姿势和场景几何形状计算得出的光流,将单个生成的图像扭曲为连续的帧。昏暗的使Lucidsim更快。最后,要生成policy数据,我们需要在封闭循环中运行图像生成,视觉策略在每个时间步骤中都会使用生成的图像。让Lucidsim“ Go Burrr”是关键,因此我开发了系统工具来分发轨迹采样,图像翘曲和跨80 + GPU的图像生成。Lucidsim的结果表明,闭环培训完全负责获得视觉政策以达到专家级的性能。
(i)学习πθ1:z 7→u(z包含一些“地面真相”数据,例如状态,交通信号灯,邻居行为)(ii)使用πθ1生成数据d = {(x i 1:t i 1:t i,u I 1:t i)} n i = 1(iii)