in science and engineeri Module 1: Laplace Tran Laplace Transforms: Def of Laplace Transform–Lin function, Dirac Delta functio Inverse Laplace Transfo to find the inverse Laplac Transforms Module 2: Fourier Series Introduction to Infinite ser condition, Fourier series of Practical Harmonic Analysis Module 3: Fourier Tran Fourier Transforms: De Transforms, Inverse Fourier Solution of first and second Module 4:数值m有限差,牛顿'lagrange的和逆滞后模块5:多项式方法的数值m解决方案,数值差异集成:辛普森(1/3
klystron管:两个空腔klystrons - 结构,速度调制过程和Applegate图,束束工艺 - o/p功率和效率的表达式。反射klystrons - 结构,Applegate图和工作原理,束数学理论,功率输出,效率,O/P特征。
I.引言Flyrock是爆炸启动时远离采矿区的岩石质量。通常考虑的第一个参数是:负担,爆炸孔直径,深度,粉末因子间距,茎,爆炸性材料类型和sub-drill在Flyrock预测期间是可控参数。此外,爆炸工程师无法影响的岩石性能是无法控制的参数,例如压缩间距和岩石的拉伸强度。因此,爆炸工程师必须更改第一个参数,以最大程度地减少flyrock掷距离。设计了各种经验方程,以设想由爆破操作[1],[2]产生的fly架。经验模型是根据flyrock上的几个现场实验的有效参数开发的,即孔直径,爆炸性,茎,负担的密度,弹出材料,粉末因子和孔长度的初始发射速度。因此,这些经验方程的性能预测能力在许多情况下不是很有效[2],[3]。
文章标题:药物重新培训中的机器学习和人工智能 - 挑战和观点作者:Ezequiel Anokian [1],Judith Bernett [2],Adrian Freeman [3],Markus List [2],LucíaPrietoSantamaría[4],Auntorrarhman Tanoli [4] Bonnin [1]分支机构:发现与转化科学(DTS),Clarivate Analytics,巴塞罗那(西班牙)[1],《系统生物学数据科学》,慕尼黑技术大学,慕尼黑技术大学,德国(德国)[2] Biopharmaceuticals R&D,阿斯利康,剑桥(英国)[3],EscuelaTécnicasuperior de gegenierossismorlosinformáticos,Madrid大学(西班牙)大学(西班牙) (FIMM),Hilife,Hilife,赫尔辛基大学(芬兰),Bioicawtech,赫尔辛基(芬兰)[5] [5] Orcid ID:0000-0003-0694-1867 [1] [1],0000-0001-501-5812-8013 [2] 0000-0002-0941-4168 [2], 0000-0003-1545-3515 [4], 0000-0003-2435-9862 [5], 0000-0001-5159-2518 [1] Contact e-mail: Sarah.bonnin@clarivate.com Journal: Drugrxiv review statement:手稿目前正在审查中,应由酌处权对待。手稿提交日期:2024年3月12日关键字:机器学习,神经网络,人工智能,药物repurost
课程目标: 1. 认识机器学习的基本术语和基本概念。 2. 理解监督学习模型的概念,重点关注最新进展。 3. 关联监督学习的神经网络模型概念 4. 发现机器学习的无监督学习范式 5. 理解强化学习和集成方法的概念。 UNIT-I 简介:机器学习、监督学习、无监督学习、强化学习简介。深度学习。 特征选择:过滤器、包装器、嵌入式方法。 特征规范化:最小-最大规范化、z 分数规范化和常数因子规范化 降维简介:主成分分析(PCA)、线性判别分析(LDA) UNIT-II 监督学习 - I(回归/分类) 回归模型:简单线性回归、多元线性回归。成本函数、梯度下降、性能指标:平均绝对误差(MAE)、均方误差(MSE)R 平方误差、调整 R 平方。分类模型:决策树 - ID3、CART、朴素贝叶斯、K 最近邻(KNN)、逻辑回归、多项逻辑回归支持向量机 (SVM) - 非线性和核方法 UNIT – III 监督学习 – II(神经网络)神经网络表示 – 问题 – 感知器、激活函数、人工神经网络 (ANN)、反向传播算法。分类指标:混淆矩阵、精度、召回率、准确度、F 分数、ROC 曲线。UNIT – IV 分类中的模型验证:交叉验证 - 保留方法、K 折、分层 K 折、留一交叉验证。偏差-方差权衡、正则化、过拟合、欠拟合。集成方法:Boosting、Bagging、随机森林。UNIT – V 无监督学习:聚类-K-均值、K-模式、K-原型、高斯混合模型、期望最大化。强化学习:探索和利用权衡、非关联学习、马尔可夫决策过程、Q 学习
摘要人工智能(AI)和机器学习(ML)正在彻底改变各个领域的人类活动,而医学和传染病并不能免除其快速和指数的增长。此外,可解释的AI和ML的领域已经获得了特别的相关性,并引起了人们的兴趣越来越大。传染病已经开始从可解释的AI/ML模型中受益。例如,在抗菌病毒预测和量子疫苗算法中,它们已被采用或提议更好地理解旨在改善2019年冠状病毒疾病诊断和管理的复杂模型。尽管有关解释性和可解释性之间二分法的某些问题仍然需要仔细关注,但对复杂的AI/ML模型如何得出其预测或建议的深入了解对于正确地面对本世纪传染病的日益严重的挑战变得越来越重要。
我们小组率先在 LHC 的高能物理分析中使用量子机器学习 (QML)。我们已在门模型量子计算机模拟器和硬件上成功将几种 QML 分类算法应用于 ttH(与顶夸克对相关的希格斯粒子生成)和希格斯粒子到两个μ子(希格斯粒子与第二代费米子的耦合)这两项最近的 LHC 旗舰物理分析。模拟研究已使用 IBM Quantum Framework、Google Tensorflow Quantum Framework 和 Amazon Braket Framework 进行,并且我们已实现良好的分类性能,其性能类似于目前在 LHC 物理分析中使用的经典机器学习方法,例如经典 SVM、经典 BDT 和经典深度神经网络。我们还使用 IBM 超导量子计算机硬件进行了研究,其性能令人鼓舞,并且接近 IBM 量子模拟器的性能。此外,我们将研究扩展到其他 QML 领域,例如量子异常检测和量子生成对抗,并已取得一些初步成果。此外,我们还使用 NVIDIA cuQuantum 和 NERSC Perlmutter HPC 克服了大量子比特(25 个量子比特或更多)和大量事件情况下的密集计算资源挑战。
人工智能(AI)可以在向预测,预防和个性化医学转变的转变中发挥至关重要的作用,前提是我们受到患者投入的科学的指导。患者报告的结果指标(PROM)代表了一个独特的机会,可以从患有健康状况的人们那里捕捉经验知识,并使其与所有其他利益相关者具有科学意义。尽管如此,使用标准化结果的吸收有限,包括研究和医疗保健系统中的舞会。本观点文章讨论了大规模使用舞会的挑战,重点是多发性硬化症。AI方法可以通过检查目前提供的护理卫生系统以及加速研究和创新来实现学习卫生系统,从而改善护理质量。但是,我们认为,无论是与研究,临床实践还是卫生系统政策有关的AI的进步至关重要,不是孤立地开发出来,而是与他们合作地实施“对“人”。与患者投入的科学实施是全球多发性硬化症(PROM)倡议的核心,将确保我们最大程度地利用AI对MS的人的潜在利益,同时避免后果。