回归是预测连续价值的过程。我们可以使用回归方法来预测使用其他一些变量的连续值,例如CAR模型的CO2发射。例如,让我们假设我们可以访问包含与来自不同汽车的CO2排放相关的数据的数据集。数据集包含诸如汽车发动机尺寸,气缸数,燃油消耗量和来自各种汽车型号的CO2排放之类的属性。现在,我们有兴趣估计其生产后新车模型的近似CO2发射。使用机器学习回归模型这是可能的。在回归中,有两种类型的变量:一个因变量和一个或多个自变量。因变量是我们研究和尝试预测的“状态”,“目标”或“最终目标”,而自变量(也称为解释变量)是这些“状态”的“原因”。自变量通常通过x显示,并且因变量用y表示。回归模型将y或因变量与x的函数相关联,即自变量。回归的关键点是因变量值应该是连续的,而不是离散值。但是,可以在分类或连续测量量表上测量自变量或变量。回归的类型:基本上,回归模型有两种类型:简单回归和多重回归。简单回归是当使用一个自变量来估计因变量时。它可以在非线性上是线性的。例如,使用“汽车的发动机尺寸”预测CO2排放。回归的线性基于自变量和因变量之间关系的性质。存在多个自变量时,该过程称为多个线性回归。例如,使用变量“汽车的发动机尺寸”和“汽车中存在的气缸数”来预测CO2排放。再次取决于因变量和自变量之间的关系,多个线性回归可以是线性或非线性回归。
Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
2 西北农林科技大学生命科学学院生物信息学中心、作物抗逆与高效生产国家重点实验室,陕西咸阳,3 西北农林科技大学农业部西北旱区玉米生物学与遗传改良重点实验室,陕西咸阳,4 俄罗斯科学院西伯利亚分院细胞学与遗传学研究所系统生物学系,俄罗斯新西伯利亚,5 俄罗斯帕特里斯·卢蒙巴人民友谊大学农业与技术学院,俄罗斯莫斯科,6 俄罗斯联邦卫生部莫斯科谢切诺夫第一国立医科大学(谢切诺夫大学)生物设计与复杂系统建模研究所信息与互联网技术系,俄罗斯莫斯科
药物化合物已成为废水中越来越重要的污染物来源,因为它是传统的处理方法无效地去除它们的方法,因此它们通常被放入环境中。可以使用液体液体提取成功去除药物,并且可以使用宇宙RS预测相互作用并识别最有前途的溶剂。但是,COSMO热模型无法解释关键过程参数,从而降低了这些计算模型的准确性。因此,需要替代计算方法来准确预测可以纳入处理和相互作用变量的药物的提取产率。这项工作使用机器学习来预测使用八种溶剂的11种药物的提取产率。探索了六个回归模型和两个分类模型。使用ANN回归器(测试MAE:4.510,测试R 2:0.884)和RF分类器(测试精度:0.938,测试召回:0.974)获得了最佳性能。RF回归分析和分类还显示了关键的提取产率特征:溶剂与喂养比,N - 辛烷 - 水分系数,氢键,氢键和范德华对多余的焓的贡献,以及pH距离至最近的PKA。机器学习显示为筛选和选择最有希望的溶剂和过程条件的绝佳工具,以从废水中去除药物。
人们对由相对少量相互作用的神经元组成的各种集合和大型神经形态系统进行了研究 [1±6]。在《Physics Uspekhi》中,许多综述介绍了使用非线性物理方法研究大脑和神经集合中的动态过程的相关主题 [7±18]。最近,对工作大脑的认知和功能特性进行建模已经成为神经动力学的前沿 [19±21]。尤其是,人们对这一主题越来越感兴趣,这与创建能够重现自然智能关键特性的人工智能系统有关 [22, 23]。为了解决这类问题,有必要建立新的动态模型,这些模型首先可以重现复杂的层次组织,其次可以重现神经元结构的可塑性,因为它们的组成以及结构之间和结构内的连接会根据信息输入的存在与否而变化。迄今为止,已经开发出两种动态建模方法 [24, 25]。其中一种方法是所谓的自上而下的方法,模型采用大脑活动模式——模拟大脑高级过程的积分变量 [20]。另一种方法自下而上,对于可以重现大脑高级功能的神经结构模型,首先,基于对神经元和结构之间连接的真实描述,建立单个神经元的模型 [25, 26]。显然,这两种方法的生物学相关模型都应该基于实验数据。在神经生理学家对大脑进行的实验研究中,神经元的活动是在受试者休息时或受试者执行某项任务时记录的。基于实验数据的模型可以通过两种方式开发。第一种是数据驱动建模,即重建一个动态系统,该系统产生的时间序列在数量上接近实验记录的时间序列。第二种方式是基于所考虑的行为问题建模,即
•是通过S'训练的学习模型•火车测试拆分的想法独立验证集纠正预测错误•无论预测器有多糟糕,都无偏见;一个好的模型降低方差
类风湿关节炎(RA)是一种自身免疫性疾病,导致进行性关节损害。早期诊断和治疗至关重要,但由于RA的复杂性和异质性,仍然具有挑战性。机器学习(ML)技术可以通过识别多维生物医学数据中的模式来增强RA管理,以改善分类,诊断和治疗预测。在这篇评论中,我们总结了ML在RA管理中的应用。新兴研究或应用为RA开发了诊断和预测模型,这些模型利用了各种数据模式,包括电子健康记录,成像和多摩学数据。高性能监督的学习模型已证明曲线下的一个面积超过0.85,用于识别RA患者并预测治疗反应。无监督的学习揭示了潜在的RA亚型。正在进行的研究是将多模式数据与深度学习相结合,以进一步提高性能。然而,关于模型过度拟合,可推广性,临床环境中的验证和可解释性的关键挑战。少量样本量和缺乏多样化的人口测试风险高估了模型性能。缺乏评估现实世界临床实用程序的前瞻性研究。增强模型可解释性对于临床医生接受至关重要。总而言之,尽管ML表现出通过早期诊断和优化治疗,更大规模的多站点数据,可解释模型的前瞻性临床验证以及对不同人群进行测试的前瞻性临床验证的有望。由于解决了这些差距,ML可能会为RA中的精密医学铺平道路。
○ITHACA,实时高级计算应用程序,是整合已经建立了良好的CSE/CFD开源软件○RBNICS作为新手ROM用户(培训)的教育计划(FEM)。○ Argos A dvanced R educed order modellin G O nline computational web server for parametric S ystems ○ PINA a deep learning library to solve differential equations ○ EzyRB data-driven model order reduction for parametrized problems ○ PyDMD a Python package designed for Dynamic Mode Decomposition ( in collaboration with University of Texas, CERN, and University of Washington)
本文探讨了量子机器学习 (QML) 在药物发现中的变革潜力。QML 利用量子计算和先进的机器学习来加速候选药物的识别、预测分子相互作用和优化化合物。关键应用包括高效虚拟筛选、分子模拟和预测建模。虽然前景光明,但 QML 面临着技术挑战,需要量子专家和制药研究人员之间的合作。总之,QML 提供了一种更快、更经济的药物开发途径,有可能重塑制药行业并推动医学科学的发展。
