引用Lai,Adrian K M,Dick,Taylor J M,Biewener,Andrew A和Wakeling,JamesM。皇家学会界面杂志18,第1期。174(2021):20200765。
摘要:纳米晶钙碳酸钙(CACO 3)和无定形可CACO 3(ACC)是越来越多的技术兴趣的材料。如今,它们主要是由稳定剂存在的Caco 3试剂湿反应产生的。 但是,最近发现可以通过计算机来产生ACC。 方解石和/或arogonite是由ACC前体形成的软体壳的矿物相。 在这里,我们调查了以潜在的工业规模转换的可能性,即从废物软体动物贝壳中转换为纳米晶体Caco 3和ACC的生物性可可3(BCC)。 使用了水产养殖物种的废物贝壳,即使用牡蛎(Crassostrea gigas,低毫克方解石),扇贝(Pecten jacobaeus,Medive-mg方解石)和蛤(Chamelea Gallina,Aragonite)。 通过使用不同的分散溶剂和潜在的ACC稳定剂来进行球铣削过程。 使用了结构,形态和光谱表征技术。 结果表明,机械化学过程产生了晶体域大小和ACC结构域的形成的降低,而ACC域的形成是在微覆盖骨料中共存的。 有趣的是,BCC的行为与地球CACO 3(GCC)的行为不同,在较长的铣削时间(24小时)时,ACC重新延伸为结晶阶段。 在机械化学处理的BCC的各种环境中的衰老产生了方解石和aragonite的混合物,以特异性的质量比,而GCC的ACC仅转化为方解石。 ■简介如今,它们主要是由稳定剂存在的Caco 3试剂湿反应产生的。但是,最近发现可以通过计算机来产生ACC。方解石和/或arogonite是由ACC前体形成的软体壳的矿物相。在这里,我们调查了以潜在的工业规模转换的可能性,即从废物软体动物贝壳中转换为纳米晶体Caco 3和ACC的生物性可可3(BCC)。使用了水产养殖物种的废物贝壳,即使用牡蛎(Crassostrea gigas,低毫克方解石),扇贝(Pecten jacobaeus,Medive-mg方解石)和蛤(Chamelea Gallina,Aragonite)。通过使用不同的分散溶剂和潜在的ACC稳定剂来进行球铣削过程。使用了结构,形态和光谱表征技术。结果表明,机械化学过程产生了晶体域大小和ACC结构域的形成的降低,而ACC域的形成是在微覆盖骨料中共存的。有趣的是,BCC的行为与地球CACO 3(GCC)的行为不同,在较长的铣削时间(24小时)时,ACC重新延伸为结晶阶段。在机械化学处理的BCC的各种环境中的衰老产生了方解石和aragonite的混合物,以特异性的质量比,而GCC的ACC仅转化为方解石。■简介总而言之,这项研究表明,BCC可以产生纳米晶CaCO 3和具有物种特异性特征的ACC复合材料或混合物。这些材料可以扩大从医学到材料科学的CACO 3的应用程序的广泛领域。
巴拉那联邦大学 - CNPJ 75.095.679/0001-49 Cel。 Francisco H. dos Santos - 库里蒂巴 - 巴拉那州 - 巴西邮政编码 81531-980 - 电话:(41) 3361-3131 - 电子邮件:ccem@ufpr.br https://siga.ufpr.br/siga/visitante/autenticacao.jsp - 验证码:BprWjqV6k
KS Sangwan 教授,皮拉尼校区 MS Dasgupta 教授,皮拉尼校区 Abhijeet K. Digalwar 教授,皮拉尼校区 Bijay K. Rout 教授,皮拉尼校区 Manoj Soni 教授,皮拉尼校区 Rajesh P Mishra 教授,皮拉尼校区 Dhananjay Madhukar Kulkarni 教授,果阿校区 教授Pravin Madanrao Singru,果阿校区 Shibu Clement 教授,果阿校区 R. Karthikeyan 教授,迪拜校区 Amit Kumar Gupta 教授,海得拉巴校区 Jeevan Jaidi 教授,海得拉巴校区 Morapakala Srinivas 教授,海得拉巴校区 N Suresh Kumar Reddy 教授,海得拉巴校区 Sandip S. Deshmukh 教授,海得拉巴校区 Srinivasa 教授Prakash Regalla,海得拉巴校区 YV Daseswara Rao 教授,海得拉巴校区 NVM Rao 教授,Pilani 校区 Shamsher Bahadur Singh 教授,Pilani 校区 Ajit Pratap Singh 教授,Pilani 校区 Annapoorna Gopal 教授,Pilani 校区 Arya Kumar 教授,Pilani 校区 PB 教授Venkataraman,皮拉尼校区 Srikanth Mutnuri 教授,果阿校区 D. Sriram 教授,海得拉巴校区 Sanket Goel 教授,海得拉巴校区 S Gurunarayanan 教授,海得拉巴校区 Venkata Vamsi Krishna Venuganti 教授,海得拉巴校区 Bhausaheb Botre 博士,CSIR - CEERI,皮拉尼 Udit Narayan Pal 博士,CSIR - CEERI,皮拉尼
CO 2羽状地热(CPG)能量系统循环地质存储的CO 2从自然渗透的沉积盆地中提取地热热。CPG系统比温度适中和渗透性的地质储层中的盐水系统比盐水系统产生更多的电力。在这里,我们在数值上模拟了沉积盆地的温度耗竭,并发现了相应的CPG发电变化。我们发现,对于给定的储层深度,温度,厚度,渗透性和井配置,最佳的井间距为储层寿命提供了最大的平均电力发电。如果井的间隔比最佳的距离更接近,则会产生较高的峰值电力,但是储层热耗尽较快。如果井的间隔大于最佳井,则伏耐热较长,但对流动的阻力更高,因此产生了较低的峰值电力。此外,比最佳的井相比,井的间距比最佳井比最佳井的间距要比最佳井的距离高10%。我们的模拟还表明,对于300 m厚的储层,707 m的井间距可在50年内提供一致的电力,而300 m的井间距会随着时间的推移而产生大量的热量和电力。最后,增加注射或生产井的管道不一定会增加平均电力发电。©2020作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
该系提供机械工程理学硕士 (MS) 学位。该课程强调三个主要专业领域的设计和应用:机械系统设计、系统动力学和控制以及热流体系统。教师的研究兴趣集中在这些领域和其他领域,包括生物工程、计算流体动力学、能源过程、流体力学、传热、计算机辅助设计和制造以及机电一体化。执业工程师可以从许多选修课中选择以满足他们的专业需求。机械工程系拥有多个设计和模拟实验室,例如亚音速风洞、制造设施和复合材料实验室。所有实验室都采用先进的计算机辅助工程工具,为学生提供真实世界的设计体验。
汽车工程:汽车及其开发,汽车的分类,传输系统,转向系统,制动系统,发电机和交流发电机和排气排放计算机集成制造:NC,CNC和DNC的简介,构建和工具,构造和工具,零件编程,零件编程,系统工程,系统,材料,自动化材料,自动化材料,机构材料,机构,工程学,工程,•工程•合金,热处理,塑料和高级材料工程机制:力法则,力矩,摩擦,重心和简单机器流体机制:流体的类型和特性:液体的类型和特性,压力及其测量,流体的测量,管道流动和流动的流动流动热量转移:热传递的模式:热传递,傅立叶法,稳态辐射,自然辐射,自然辐射,自然,限制,限制,限制,限制,限制,限制,限制,限制,限制,限制,限制。
机电工程学者所作的世界级研究成果得到了不同方面的认可。根据斯坦福大学最近编制并于 2022 年 11 月发布的“标准化引文指标的科学范围作者数据库更新”,21 名机电工程学者(其中 12 名是现任机电工程成员)因其职业生涯引用影响力而跻身其主要学科领域中全球被引用次数最多的科学家前 2%。此外,另外 3 名现任机电工程学者也因其最近一年的单一影响力而入选。此外,张晓博士再次被列为理大 12 位被科睿唯安列入“高被引研究人员(2022 版)”名单的学者之一。该名单确定了全球最具影响力的学者,他们拥有出色的研究表现,这些学者发表的多篇高被引论文在各自领域的引用次数排名前 1%。机电工程同事积极参与研究合作,成功获得了多个合作研究项目。其中一项显著的成就是成立了高性能微/中尺度表面功能结构先进制造联合研究中心。我们通过与上海交通大学合作,在内地/大湾区科研资助计划下,为该中心争取到港币750万元的启动资金。此外,我们还与深圳大学、华南理工大学和香港城市大学开展了科技项目合作。此外,我们还与其他机构合作,成功获得了四项一般研究补助金。这些
为了准确回答这个问题,需要对机械工程中的人工智能进行冷静的分析。从原始设备、组件和结构的设计开始,人工智能以多种方式增强了设计过程。一个例子是使用生成设计来解决复杂的机械工程问题。生成设计是一个迭代过程,致力于在指定的约束内解决复杂的挑战。Autodesk Fusion 360 或 Grasshopper 3D 应用程序的用户必须尝试过生成设计。在这些用例中,运行模拟所需的必要设计参数完全由机械工程师定义。
